Bioengineering 208
Magnetic Resonance Imaging

Winter 2007
Lecture 5

• MRI Artifacts
 – Noise spikes
 – Clipping
 – Gibbs Ringing
 – Quadrature ghost
 – Wraparound
 – Motion
 – Chemical Shift

• SNR in MRI
 – RF Coil
 – Magnetization
 – Sampling time

E. Wong, BE208, UCSD Winter 2007

Normal Image

K-space

Image space
Noise Spike

- Localized in K-space
- Extends outside object in image space
- Come from arcing, loose connections, ground spikes

More Noise Spikes

- Multiple spikes create multiple sinusoids and generate ‘herringbone’ patterns
Data clipping

- Center of K-space over-ranges ADC and clips
- Image is (correct image) - (low frequency image)

Data clipping

- Here is the data that was clipped
Gibbs Ringing

- Data is truncated before it decays into the noise
- Result is an image convolved with FT of the window in k-space

Quadrature Ghost

- K-space data is a superposition of good_data and good_data*
 - => Image space is a superposition of good_image(x,y) and good_image(-x,-y)
Wraparound

Phase Encode
- K-space sampled discretely
- Susceptible to aliasing

Frequency Encode
- K-space travelled continuously, but data is digitized
- Wraparound can be prevented by either analog or digital bandpass filter

No Phase Wrap

Motion Artifact

- Motion between TR periods generates inconsistency between lines of K-space
- Ghosts propagate in the phase encode direction
- Period motion generates structured ghosts (analogous to EPI Nyquist Ghosts)

E. Wong, BE208, UCSD Winter 2007

http://www.fmrib.ox.ac.uk/~peterj/lectures/kspace/img034.GIF

E. Wong, BE208, UCSD Winter 2007

http://www.rad.pulmonary.ubc.ca
Chemical Shift

- Magnetic field of electron clouds shields nucleus from external magnetic field
- \(\Rightarrow \) Actual magnetic field experienced by nucleus is smaller than applied field
- Differences in local field are called chemical shift, and are measured in PPM
- Water and fat differ in chemical shift by 3.5 PPM = 440Hz at 3T
- Chemical shift causes phase twist across readout
- Fourier shift theorem tells you how far things are shifted

CONVENTIONAL IMAGING

\[
\begin{array}{c}
0ms \\
\uparrow \\
1 / 0ms = \infty \text{ Hz / pixel} \\
\downarrow \\
\downarrow 8ms \\
\downarrow 1 / 8ms = 125 \text{ Hz / pixel}
\end{array}
\]

E. Wong, BE208, UCSD Winter 2007
Off Resonance Behavior: EPI

\[0.5\text{ms} \rightarrow 40\text{ms} \rightarrow 1 / 40\text{ms} = 25 \text{Hz/pixel} \]
\[1 / 0.5\text{ms} = 2000 \text{Hz/pixel} \]

Signal to Noise Ratio in MRI

\[\text{SNR} \propto (\text{coil _ factor}) \times (\text{magnetization _ factor}) \times (\text{sampling _ factor}) \]

- Proportional to local B1
- Sample noise increases with coil size
- Depends on coil geometry, coil quality (internal coil losses)
- Proportional to \(M_{\text{xy}} \) at time of readout
- Depends on \(B_0 \), pulse sequence, TR, TE, PD, \(T_1 \), \(T_2 \), \(T_2^* \), voxel volume

\[\text{SNR} \propto (\text{voxel _ volume})^{\sqrt{\text{total _ readout _ time}}} \]