Bioengineering 208
Magnetic Resonance Imaging

Winter 2007

Lecture 1

Topics:
-Review of NMR basics
-Hardware Overview
-Quadrature Detection

Boltzmann Distribution

$$
\frac{\text { Number of Spins Down }}{\text { Number of Spins Up }}=e^{-\Delta E / k T}
$$

$$
\text { Ratio }=0.999990 \text { at } 1.5 \mathrm{~T}!!!
$$

Corresponds to an excess of about 10 up spins per million

Magnetization Vector

Vector sum of the magnetic moments over a volume.

For a sample at equilibrium in a magnetic field, the transverse components of the moments cancel out, so that there is only a longitudinal component.

Equation of motion is the same form as for individual moments.

http://www.easymeasure.co.uk/principlesmri.aspx
E. Wong, BE208, UCSD Winter 2008

RF Excitation

Image \& caption: Nishimura, Fig. 3.2

At equilibrium, net magnetizaion is parallel to the main magnetic field. How do we tip the magnetization away from equilibrium?
B_{1} radiofrequency field tuned to Larmor frequency and applied in transverse ($x y$) plane induces nutation (at Larmor frequency) of magnetization vector as it tips away from the z-axis.

- lab frame of reference

Bloch Equation

$\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions.

Relaxation: Z-component

$$
M_{z}(t)=M_{0}+\left(M_{z}(0)-M_{0}\right) e^{-t / T_{1}}
$$

Relaxation: Transverse Component

$$
\begin{aligned}
& M \equiv M_{x}+j M_{y} \\
& \begin{aligned}
d M / d t & =d / d t\left(M_{x}+i M_{y}\right) \\
& =-j\left(\omega_{0}+1 / T_{2}\right) M
\end{aligned} \\
& M(t)=M(0) e^{-j \omega_{0} t} e^{-t / T_{2}} \quad \omega_{0}=\gamma \mathbf{B}
\end{aligned}
$$

Relaxation: Summary

1) Longitudinal component recovers exponentially.
2) Transverse component precesses and decays exponentially.

Hardware Overview

Three fields:

 - Main Field (B_{0})-Polarize Spins
-Gradient Fields $\left(\mathrm{G}_{[\mathrm{XYZ}}\right)$

- Map space into frequency
- $\frac{\partial B_{Z}}{\partial[X Y Z]}$
- RF Fields (B_{1})
-Change the latitude or zenith angle of ('tips') spins

Main Field $\left(\mathrm{B}_{0}\right)$

How do we decide on $\mathrm{B}_{\underline{0}}$?

$$
\begin{aligned}
\Delta E & =\gamma h B_{0} \\
M_{0} & \propto \Delta E
\end{aligned}
$$

\therefore Bigger is better!

3T Human @UCSD. 7T Rodent @UCSD
7T Human @U.Minn. 9.4T Human @UIC

Main Field (B_{0})

Energy in a Magnetic Field:

$$
E=\frac{1}{2 \mu_{0}} \int B^{2} d V
$$

For $\mathrm{B}=3 \mathrm{~T}$ over $1 \mathrm{~m}^{3}$:

$$
E=\frac{1}{2\left(1.25 \times 10^{-6}\right)} 9=3.6 \mathrm{MJ} \begin{gathered}
\begin{array}{c}
=\text { dropping a loong } \\
\text { car from 300 } \\
\text { com high }
\end{array} \\
\hline
\end{gathered}
$$

Heat of Vaporization of $\mathrm{He}=2.5 \mathrm{KJ} / \mathrm{l}$
During a quench, R goes from 0 to $\sim 100 \Omega$, $\mathrm{I} \sim 100 \mathrm{~A}$, so $\mathrm{P}=\mathrm{I}^{2} \mathrm{R} \sim 1 \mathrm{MW}$
\therefore A quench can boil off $3.6 \mathrm{MJ} / 2.5 \mathrm{KJ} / l=1400 l$ of Helium in 3.6MJ/1MW ~3.6s !!!

Main Field (B_{0})

Wavelength (λ) of RF:

In Vacuum:
5m @ 60MHz (1.5T)
1 m @ 300MHz (7T)

In Brain: 12 cm @ $300 \mathrm{MHz}(7 \mathrm{~T})^{1}$

When λ is not large compared to object, standing waves form. This is referred to as Dielectric Resonance. RF inhomogeneity during receive is fixed by scaling, but RF transmit inhomogeneity is much more difficult to address.

Gradient Fields

$$
G_{X} \equiv \frac{\partial B_{Z}}{\partial X} \quad G_{Y} \equiv \frac{\partial B_{Z}}{\partial Y} \quad G_{Z} \equiv \frac{\partial B_{Z}}{\partial Z}
$$

How big do gradient fields need to be?
-Shortest soft tissue $\mathrm{T}_{2}{ }^{*} \sim 1 \mathrm{~ms}$

-For 0.2 mm resolution in 1 ms :

$$
G=\frac{K_{\text {max }}}{\gamma T}=\frac{(0.5 / 0.2 \mathrm{~mm})}{(4257 \mathrm{~Hz} / \mathrm{G})(1 \mathrm{~ms})} \approx 5 \mathrm{G} / \mathrm{cm}
$$

- To fill $1 \mathrm{~m}^{3}$ with $5 \mathrm{G} / \mathrm{cm}$ gradients in 0.2 ms requires:

$$
P=\frac{E}{T}=\frac{1 / 2 \mu_{0} \int B^{2} d V}{T} \approx \frac{1 / 2 \mu_{0}\left(B_{\text {Rus }}(5 G / \mathrm{cm})\right)^{2}\left(1 \mathrm{~m}^{3}\right)}{0.2 \mathrm{~ms}} \approx 500 \mathrm{KW} \rightarrow \begin{aligned}
& \text { Abouts simultaneous } \\
& \text { Roling Stones concerts }
\end{aligned}
$$

- Modern gradient systems are also up against dB/dt limits for peripheral nerve stimulation ($\sim 50 \mathrm{~T} / \mathrm{s}$)
- For diffusion or ultrashort $\mathrm{T}_{2} *$ imaging, more G would help a lot

RF Fields

How big do RF fields need to be?
-Shortest soft tissue $\mathrm{T}_{2} * \sim 1 \mathrm{~ms}$
-To flip spins by 90° (0.25 rotations) in 0.2 ms :

$$
B_{1}=\frac{0.25}{\gamma T}=\frac{0.25}{(4257 \mathrm{~Hz} / \mathrm{G})(0.2 \mathrm{~ms})} \approx 0.24 G
$$

- RF power absorption by the body is a complex function of frequency, conductivity, and geometry, but at 0.24 G , approximately $200 \mathrm{~W} / \mathrm{Kg}$ are deposited in human tissue at 3 T . Thus, for a 100 Kg person, the RF system must supply 20 KW of deposited power, or about 40 KW of total power, assuming 50% losses to the coil, cabling, reflections, and radiation.

Quadrature Reception

Original quadrature detection: separate coils and A / D for I and Q

E. Wong, BE208, UCSD Winter 2008
http://www.easymeasure.co.uk/principlesmri.aspx

Quadrature Reception

Because $\omega_{0} \gg$ bandwidth, 2 coils are not needed for phase detection. However, second coil does increase SNR

Quadrature Reception

Digital quadrature requires 2 x faster sampling, but eliminates

Quadrature Reception

Summary:

1. Quadrature RF coil is NOT needed to detect MR signal phase.
2. Quadrature RF coil improves SNR by $\sqrt{2}$
3. Digital quadrature detection:
4. Eliminates I/Q imbalance
5. Moves DC offset in ADC to edge of image
6. Requires 2 x higher sampling rate than separate I / Q
