Revised Syllabus

Week 1
- **Thursday** 9/23
 Introduction, Course Policies, Overview of Imaging Modalities

Week 2
- **Tuesday** 9/28
 Linear systems: linearity, delta functions, superposition integral, shift invariance, 1D and 2D convolution, examples.
- **Thursday** 9/30
 Fourier Transforms: 1D FT, basis functions, FT properties, duality

Week 3
- **Tuesday** 10/5
 Fourier Transforms: 2D FT, basis functions, properties, duality
- **Thursday** 10/7
 Sampling: 1D and 2D sampling, Whitaker-Shannon sampling theorem, aliasing

Week 4
- **Tuesday** 10/12
 Sampling continued, Windowing, Resolution. Discrete Fourier Transform:
- **Thursday** 10/14
 MRI: Basic physics, Bloch Equation

Week 5
- **Tuesday** 10/19
 MRI: Gradients, Signal Equation, k-space trajectories
- **Thursday** 10/21
 MRI: sampling requirements, slice selection, image contrast

Week 6
- **Tuesday** 10/26
 MRI: angiography, arterial spin labeling, diffusion imaging, fMRI
- **Thursday** 10/28
 Noise

Week 7
- **Tuesday** 11/2
 Least squares Estimation and Inverse Theory
- **Thursday** 11/4
 X-Rays, CT: physics and hardware

Week 8
- **Tuesday** 11/9
 CT: Radon transform, filtered back projection
- **Thursday** 11/11
 NO CLASS. Veteran’s Day Holiday

Week 9
- **Tuesday** 11/16
 Ultrasound: echo equation, impulse response, diffraction
- **Thursday** 11/18
 Ultrasound: phased array systems, beam formation, Doppler

Week 10
- **Tuesday** 11/23
 Nuclear Imaging Modalities, Molecular Imaging
- **Thursday** 11/25
 NO CLASS. Thanksgiving Holiday

Week 11
- **Tuesday** 11/30
 Optical Imaging, EEG, MEG
- **Thursday** 12/2
 TBD