HOMEWORK \#3

Due at the start of Class on Thursday 10/20/05

Readings:

1. Review last week's reading as necessary. Read Section 2.8 and Sections 3.1 through 3.3.

Problems:

1. Problem 2.6.
2. Problem 2.10 (parts a, b and d).
3. Use the convolution and modulation theorems to find and graph the transforms of the following functions: $\operatorname{sinc}(x) * \operatorname{sinc}(2 x)$ and $[\operatorname{sinc}(x) \cos (10 \pi x)]^{2}$
4. Sketch the function $g(x, y)=\exp (-j 2 \pi(3 x+2 y)) \cos (2 \pi 6 x)$. Find and sketch its 2D Fourier Transform of Hint: the function is separable.
5. Consider the 2D object $m(x, y)=\sin c(x) \sin c(y)[\cos (8 \pi x)+\cos (16 \pi y)]$
(a) Sketch $m(x, y)$.
(b) Derive and sketch the 2D Fourier transform of $m(x, y)$.
(c) Define $h(x, y)=[m(x, y) \cos (8 \pi x)] * *[\sin c(2 x) \sin c(2 y)]$. Sketch and give a simple expression for $h(x, y)$. Give an intuitive explanation for your result.

MATLAB Exercise:.

Steps:

1. First download the file BE280Ahw lim.mat from the course website.
2. Load the image into MATLAB with the command: load BENG280Ahwlim.
3. Compute the 2D Fourier transform of the image with the command $M f=f f t 2$ (Mimage); where the 2D transform will now be stored in the variable $M f$. Remember to add the semicolon at the end of the command, otherwise MATLAB will display all the numbers in the matrix! The command fft2 puts the zero-frequency value of the transform at the first indices of the matrix. For display it's convenient to put the zero-frequency value in the center of the matrix. To do this, type $M f=f f t s h i f t(M f)$;

4. Aliasing

(a) Aliasing in the x -direction. Pick out every other column in the transform matrix and take the inverse transform. The steps are as follows: (the >> represents the MATLAB prompt) >> alias_span = 1:2:256;
>> Mf2 = zeros(256,256);
>> Mf2(:,alias_span) = Mf(:,alias_span);
>> Mf2 = fftshift(Mf2);
>> M_aliasx = ifft2(Mf2);
>> imagesc(abs(M_aliasx)); \% This will be an image showing aliasing in the x-direction.
(b) Demonstrate aliasing in the y-direction. Hand in code and image.
(c) Demonstrate aliasing in the \mathbf{x} and \mathbf{y} directions. Hand in code and image.
(d) Show one additional example of aliasing, where you take every Nth sample (e.g. every $4^{\text {th }}$ or $8^{\text {th }}$ sample). Show that the resultant image is what you would expect from sampling theory.

