

K-space

At each point in time, the received signal is the Fourier transform of the object

 $s(t) = M(k_x(t), k_y(t)) = F[m(x, y)]_{k_x(t), k_y(t)}$

evaluated at the spatial frequencies:

$$k_x(t) = \frac{\gamma}{2\pi} \int_0^t G_x(\tau) d\tau$$
$$k_y(t) = \frac{\gamma}{2\pi} \int_0^t G_y(\tau) d\tau$$

Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k-space to form our image.

Thomas Liu, BE280A, UCSD, Fall 2005

