
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MR signal is Fourier Transform

\qquad
$s(t)=\int_{x} \int_{y} m(x, y) \exp \left(-j 2 \pi\left(k_{x}(t) x+k_{y}(t) y\right)\right) d x d y$
$=M\left(k_{x}(t), k_{y}(t)\right)$
$=F[m(x, y)]_{k_{x}(t), k_{s}(t)}$

Thomas Liu, BE280A, UCSD, Fall 2005
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

K-space

At each point in time, the received signal is the Fourier transform of the object

$$
\left.s(t)=M\left(k_{x}(t), k_{y}(t)\right)=F[m(x, y)]\right]_{k_{k}(t), f_{k}(t)}
$$

evaluated at the spatial frequencies:

$$
\begin{aligned}
& k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{\prime} G_{x}(\tau) d \tau \\
& k_{y}(t)=\frac{\gamma}{2 \pi} \int_{0}^{\prime} G_{y}(\tau) d \tau
\end{aligned}
$$

Thus, the gradients control our position in k -space. The design of an MRI pulse sequence requires us to efficiently cover enough of k -space to form our image.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \Delta k_{x}=\frac{\gamma}{2 \pi} G_{x y} \Delta t \\
& F O V_{x}=\frac{1}{\Delta k_{x}}
\end{aligned}
$$

Thomas Liu, BE280A, UCSD, Fall 2005
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example			
Goal:			
$\begin{aligned} & F O V_{x}=F O V_{y}=25.6 \mathrm{~cm} \\ & \delta_{x}=\delta_{y}=0.1 \mathrm{~cm} \end{aligned}$	G_{kr}		
Readout Gradient : $F O V_{=}=\frac{1}{\gamma}$	\square_{1}		
$\frac{\gamma}{2 \pi} G_{m} \Delta t$	ADC		
Pick $\Delta \mathrm{t}=32 \mu \mathrm{sec}$	$\square\|\mid d\\|d\\|$		
$\begin{aligned} G_{x v}=\frac{1}{F O V_{x} \frac{\gamma}{2 \pi} \Delta t} & =\frac{1}{(25.6 \mathrm{~cm})\left(42.57 \times 10^{6} T^{-1} \mathrm{~s}^{-1}\right)\left(32 \times 10^{-6} \mathrm{~s}\right)} \\ & =2.8675 \times 10^{-5} \mathrm{~T} / \mathrm{cm} \\ & =.28675 \mathrm{G} / \mathrm{cm} \end{aligned}$	$\xrightarrow{\rightarrow+}$		
1 Gauss $=1 \times 10^{-4}$ Tesla			
Thomas Liu, BE280A, UCSD, Fall 2005			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example	
Phase - Encode Gradient : $\begin{aligned} \delta_{y}=\frac{1}{\frac{\gamma}{2 \pi} 2 G_{y p} \tau_{y}} \\ \begin{aligned} G_{y p}=\frac{1}{\delta_{\mathrm{y}} 2 \frac{\gamma}{2 \pi} \tau_{y}} & =\frac{1}{(0.1 \mathrm{~cm})\left(4257 \mathrm{G}^{-1} \mathrm{~s}^{-1}\right)\left(4.096 \times 10^{-3} \mathrm{~s}\right)} \\ & =0.2868 \mathrm{G} / \mathrm{cm} \\ & =\frac{\mathrm{N}_{\mathrm{p}}}{2} G_{y i} \end{aligned} \end{aligned}$ where $\mathrm{N}_{\mathrm{p}}=\frac{F O V_{y}}{\delta_{\mathrm{y}}}=256$	$\mathrm{G}_{\mathrm{y}}(\mathrm{t})$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Slice Selection

Recall, that we can tip spins away from their equilibrium state by applying a radio-frequency pulse at the Larmor frequency.

In the presence of a spatial gradient $\mathrm{G}_{\mathrm{z} \text {. }}$ spins in an interval $\Delta z / 2$ to $-\Delta z / 2$ have Larmor frequencies ranging from $\omega_{0}-\gamma G_{z} \Delta z / 2$ to $\omega_{0}+\gamma G_{z} \Delta z / 2$. In order to tip all the spins in this interval, we can apply an RF pulse with energy that is spaced over this frequency interval.

