Bioengineering 280A Principles of Biomedical Imaging

Fall Quarter 2005 MRI Lecture 6



Moving Spins

So far we have assumed that the spins are not moving (aside from thermal motion giving rise to relaxation), and contrast has been based upon T_1 , T_2 , and proton density. We were able to achieve different contrasts by adjusting the appropriate pulse sequence parameters.

Biological samples are filled with moving spins, and we can also use MRI to image the movement. Examples: blood flow, diffusion of water in the white matter tracts. In addition, we can also sometimes induce motion into the object to image its mechanical properties, e.g. imaging of stress and strain with MR elastography.



Phase of a Moving Spin

$$\begin{split} \varphi(t) &= -\int_0^t \!\! \Delta \omega(\tau) d\tau \\ &= -\int_0^t \!\! \gamma \Delta B(\tau) d\tau \\ &= -\int_0^t \!\! \gamma \vec{G}(\tau) \cdot \vec{r}(\tau) d\tau \\ &= -\gamma \int_0^t \!\! \left[G_x(\tau) x(\tau) + G_y(\tau) y(\tau) + G_z(\tau) z(\tau) \right] \!\! d\tau \end{split}$$

Thomas Liu, BE280A, UCSD, Fall 2005

Phase of Moving Spin

Consider motion along the x-axis

$$x(t) = x_0 + vt + \frac{1}{2}at^2$$

$$\begin{split} \varphi(t) &= -\gamma \int_0^t G_x(\tau) x(\tau) d\tau \\ &= -\gamma \int_0^t G_x(\tau) \left[x_0 + v\tau + \frac{1}{2} a\tau^2 \right] d\tau \\ &= -\gamma \left[x_0 \int_0^t G_x(\tau) d\tau + v \int_0^t G_x(\tau) \tau d\tau + \frac{a}{2} \int_0^t G_x(\tau) \tau^2 d\tau \right] \\ &= -\gamma \left[x_0 M_0 + v M_1 + \frac{a}{2} M_2 \right] \end{split}$$

Phase of Moving Spin

$$\varphi(t) = -\gamma \left[x_0 M_0 + v M_1 + \frac{a}{2} M_2 \right]$$

$$M_0 = \int_0^t G_x(\tau) d\tau$$

Zeroth order moment

$$M_1 = \int_0^t G_x(\tau) \tau d\tau$$

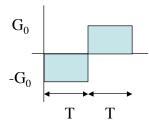
First order moment

$$M_2 = \int_0^t G_x(\tau) \tau^2 d\tau$$

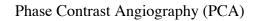
Second order moment

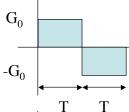
Thomas Liu, BE280A, UCSD, Fall 2005

Flow Moment Example



$$\begin{split} M_0 &= \int_0^t G_x(\tau) d\tau = 0 \\ M_1 &= \int_0^t G_x(\tau) \tau d\tau \\ &= -\int_0^T G_0 \tau d\tau + \int_T^{2T} G_0 \tau d\tau \\ &= G_0 \left[-\frac{\tau^2}{2} \Big|_0^T + \frac{\tau^2}{2} \Big|_T^{2T} \right] \\ &= G_0 \left[-\frac{T^2}{2} + \frac{4T^2}{2} - \frac{T^2}{2} \right] = G_0 T^2 \end{split}$$





$$\varphi_1 = -\gamma v_x M_1 = \gamma v_x G_0 T^2$$

$$G_0$$
 G_0
 G_0

$$\varphi_2 = -\gamma v_x M_1 = -\gamma v_x G_0 T^2$$

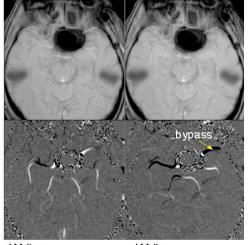
$$\Delta \varphi = \varphi_1 - \varphi_2 = 2\gamma v_x G_0 T^2$$

$$v_{x} = \frac{\Delta \varphi}{2G_{0}T^{2}}$$

Thomas Liu, BE280A, UCSD, Fall 2005

PCA example

 $-G_0$



White = Flow direction AP (\downarrow)

White = Flow direction RL (\rightarrow)

Thomas Liu, BE280A, UCSD, Fall 2005

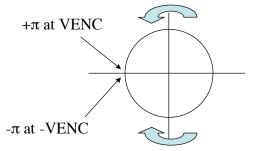
 $http://www.medical.philips.com/main/products/mri/assets/images/case_of_week/cotw_51_s5.jpg$

Aliasing in PCA

Define VENC as the velocity at at which the phase is 180 degrees.

$$VENC = \frac{\pi}{\gamma G_0 T^2}$$

Because of phase wrapping the velocity of spins flowing faster than VENC is ambiguous.



Thomas Liu, BE280A, UCSD, Fall 2005

Aliasing Solutions



Use multiple VENC values so that the phase differences are smaller than $\boldsymbol{\pi}$ radians.

$$\varphi_1 = \pi \frac{v_x}{VENC_1}$$

$$\varphi_2 = \pi \frac{v_x}{VENC_2}$$

$$\varphi_1 - \varphi_2 = \pi v_x \left(\frac{1}{VENC_1} - \frac{1}{VENC_2}\right)$$

Velocity k-space

A bipolar gradient introduces a phase modulation across velocities of the form $\varphi(v_x) = -\gamma v_x G_0 T^2$

We can make measurements with different amounts of phase modulation and then integrate over velocities to obtain

$$M(k_{v_x}) = \int_{-\infty}^{\infty} m(v_x) e^{j\varphi(v_x)} dv_x$$

$$= \int_{-\infty}^{\infty} m(v_x) e^{-j\gamma v_x G_0 T^2} dv_x$$

$$= \int_{-\infty}^{\infty} m(v_x) e^{-j2\pi k_{v_x} v_x} dv_x$$

$$= F[m(v_x)] \text{ with } k_{v_x} = \frac{\gamma}{2\pi} G_0 T^2$$

By making measurements with bipolar gradients of varying amplitudes/durations and taking the inverse transform of the measurements, we can obtain the velocity distribution.

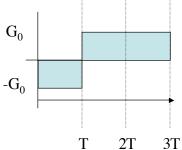
Thomas Liu, BE280A, UCSD, Fall 2005

Velocity k-space

$$M(k_x, k_{v_x}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} m(x, v_x) e^{-j2\pi k_x x} e^{-j2\pi k_{v_x} v_x} dx dv_x$$

In addition, we can apply imaging gradients so that we can eventually obtain the velocity distribution at each point in space. A full k-space acquisition would then yield 6 dimensions -- 3 spatial dimensions and 3 velocity dimensions.

Readout Gradient Flow Artifacts



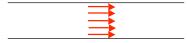
During readout moving spins within the object will accumulate phase that is in addition to the phase used for imaging. This leads to

- 1) Net phase at echo time TE = 2T.
- 2) An apparent shift in position of the object.
- 3) Blurring of the object due to a quadratic phase term.

Thomas Liu, BE280A, UCSD, Fall 2005

Flow Artifacts

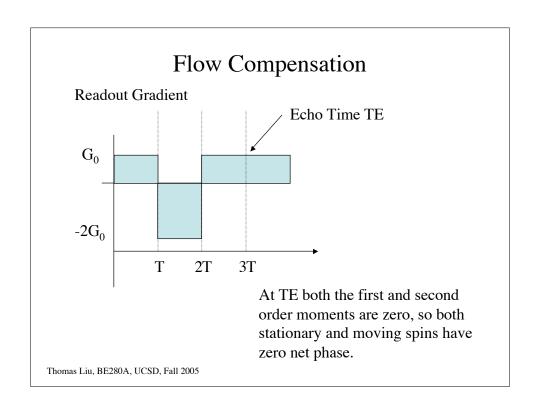
Plug Flow

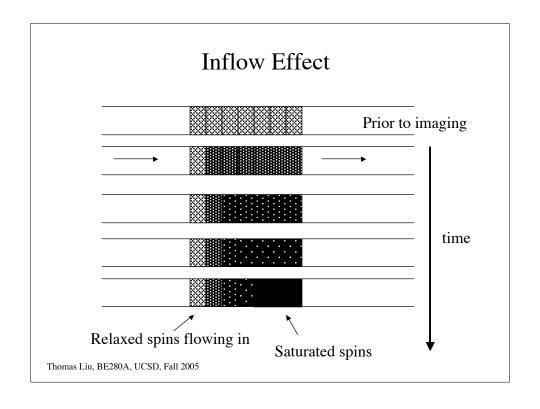


Laminar Flow

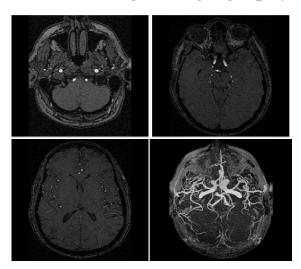
All moving spins in the voxel experience the same phase shift at echo time.

Spins have different phase shifts at echo time. The dephasing causes the cancelation and signal dropout.





Time of Flight Angiography



Thomas Liu, BE280A, UCSD, Fall 2005

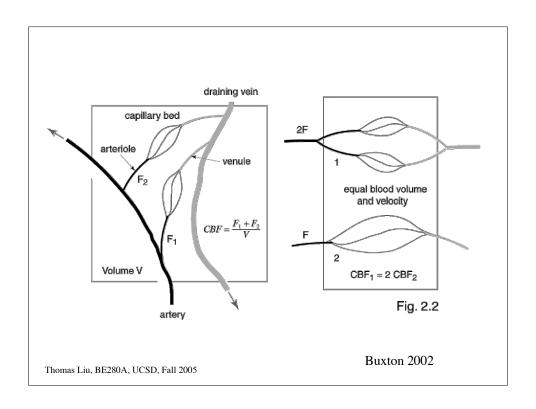
Cerebral Blood Flow (CBF)

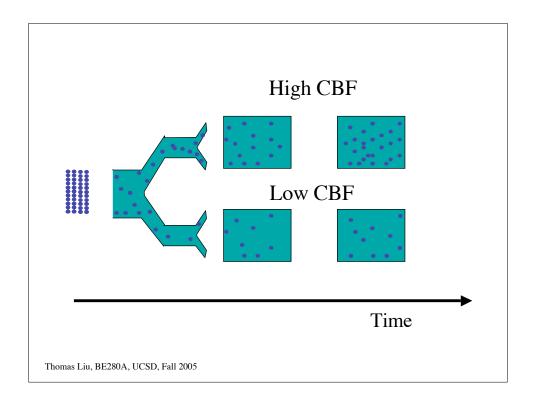
CBF = Perfusion

= Rate of delivery of arterial blood to a capillary bed in tissue.

Units: (ml of Blood)
(100 grams of tissue)(minute)

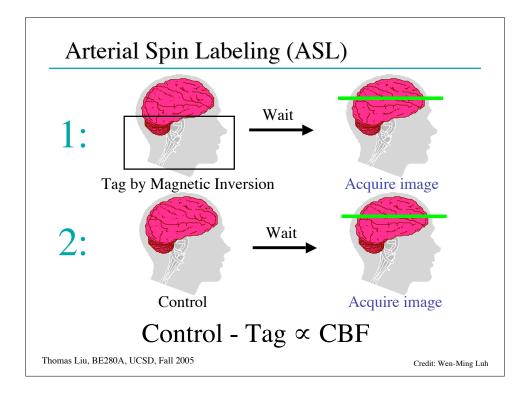
Typical value is 60 ml/(100 g-min) or $60 \text{ ml/}(100 \text{ ml-min}) = 0.01 \text{ s}^{-1}$, assuming average density of brain equals 1 gm/ml

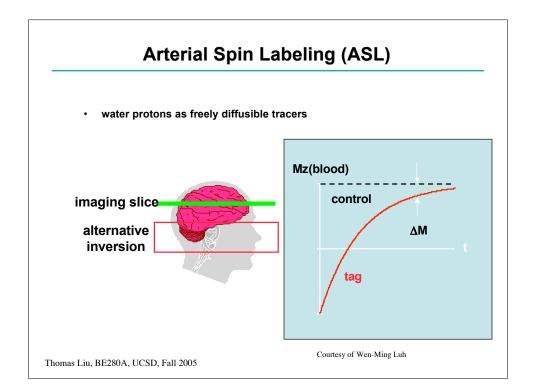




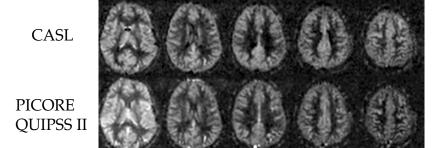
Arterial Spin Labeling

- Magnetically tag inflowing arterial blood
- •Wait for tagged blood to flow into imaging slice
- Acquire image of tissue+tagged blood
- Apply control pulse that doesn't tag blood
- Acquire control image of tissue
- •Control image-tag image = blood image





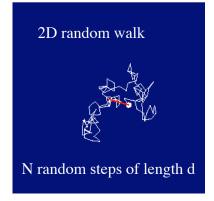
Multislice CASL and PICORE



Thomas Liu, BE280A, UCSD, Fall 2005

Credit: E. Wong

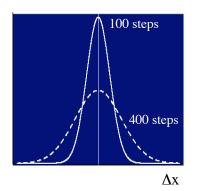
Diffusion



$$<\Delta x^2>= Nd^2 = 2DT$$

D = diffusivity

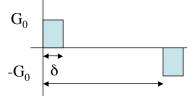
Thomas Liu, BE280A, UCSD, Fall 2005



In brain: D $\approx 0.001 \text{ mm}^2/\text{s}$ For T=100 msec, $\Delta x \approx 15 \mu$

Credit: Larry Frank

Diffusion Weighting



Assume $\delta \ll T$

$$\varphi(t_1) \approx -\gamma G_0 x(t_1) \delta$$

$$\varphi(t_2) \approx + \gamma G_0 x(t_2) \delta$$

Net Phase

$$\varphi \approx \varphi(t_1) + \varphi(t_2) = \gamma G_0 \Big[x \Big(t_2\Big) - x \Big(t_1\Big) \Big] \delta = \gamma G_0 \Delta x \delta$$

Average Squared Phase

$$\langle \varphi^2 \rangle = \gamma^2 G_0^2 \delta^2 \langle (\Delta x)^2 \rangle = \gamma^2 G_0^2 \delta^2 2DT$$
 b-factor Signal

$$S \propto e^{-\langle \varphi^2 \rangle/2} = e^{-\gamma^2 G_0^2 \delta^2 DT} = e^{-bD}$$
 where $b = \gamma^2 G_0^2 \delta^2 T$

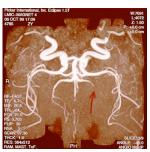
A more careful analysis yields b = $\gamma^2 G_0^2 \delta^2 (T - \delta/3)$

Diffusion Weighted Images

T2 weighted

Diffusion Weighted

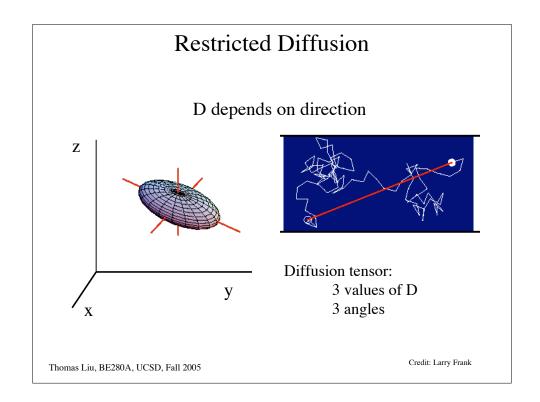
Angiogram

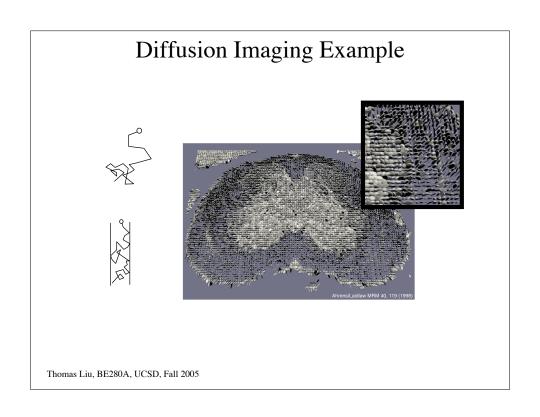


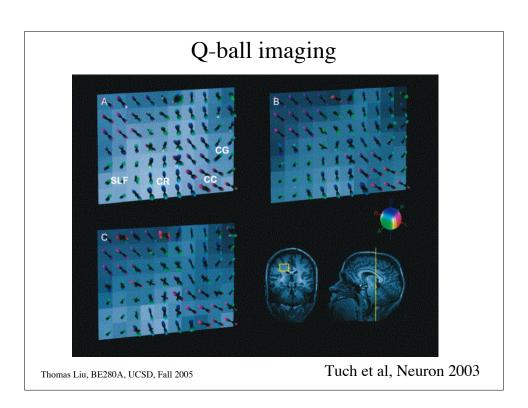
After a stroke, normal water movement is restricted in the region of damage. Diffusivity decreases, so the signal intensity increases.

Thomas Liu, BE280A, UCSD, Fall 2005

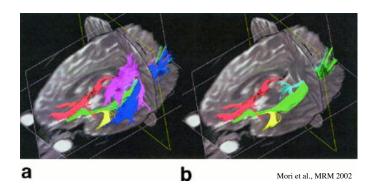
http://lehighmri.com/cases/dwi/patient-b.html







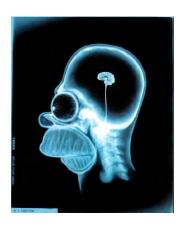
Fiber Tract Mapping



Thomas Liu, BE280A, UCSD, Fall 2005

fMRI

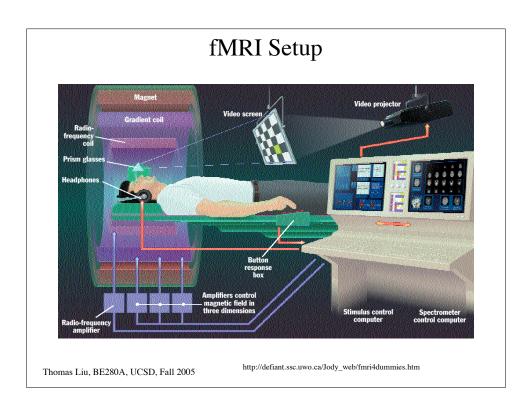
MRI studies brain anatomy.

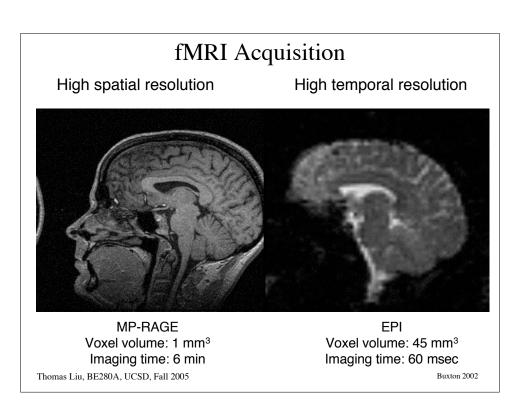


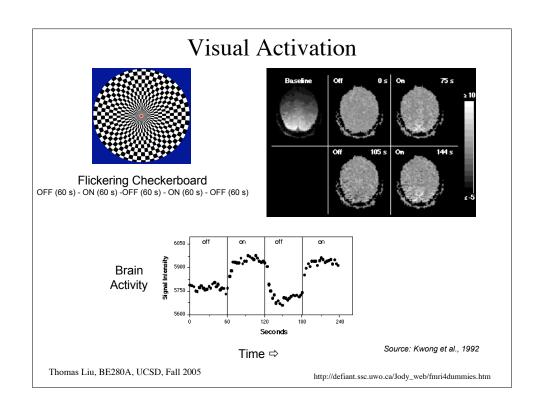
Thomas Liu, BE280A, UCSD, Fall 2005

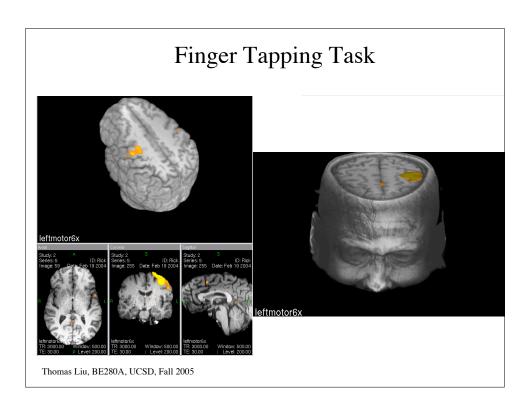
<u>Functional</u> MRI (fMRI) studies brain <u>function</u>.

 $http://defiant.ssc.uwo.ca/Jody_web/fmri4dummies.htm$

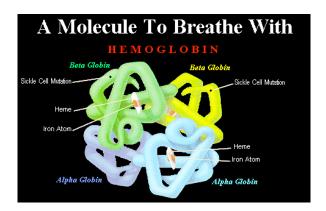








Hemoglobin



Oxygen binds to the iron atoms to form oxyhemoglobin HbO_2 Release of O_2 to tissue results in deoxyhemoglobin $dHBO_2$

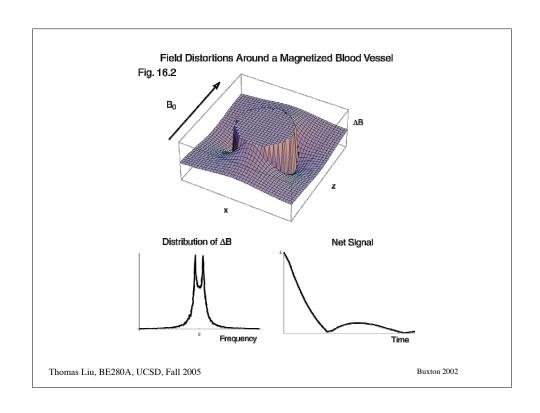
Thomas Liu, BE280A, UCSD, Fall 2005

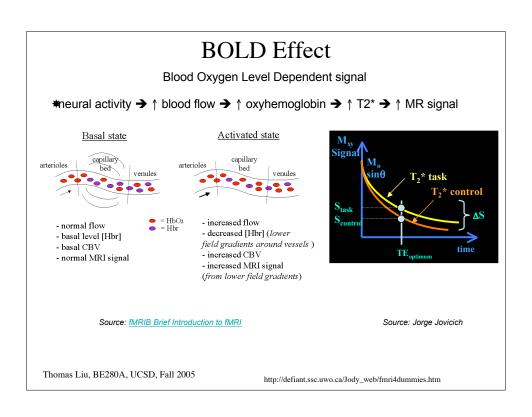
http://www.people.virginia.edu/~rjh9u/hemoglob.html

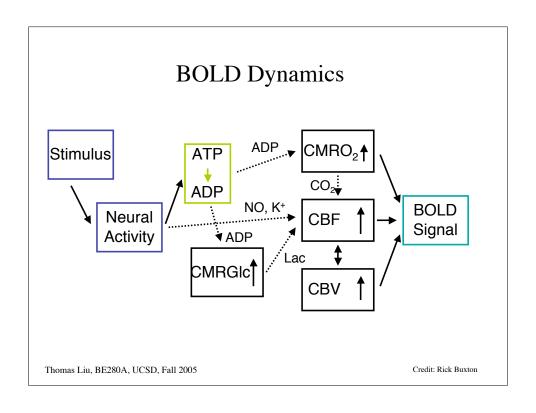
Effect of dHBO₂

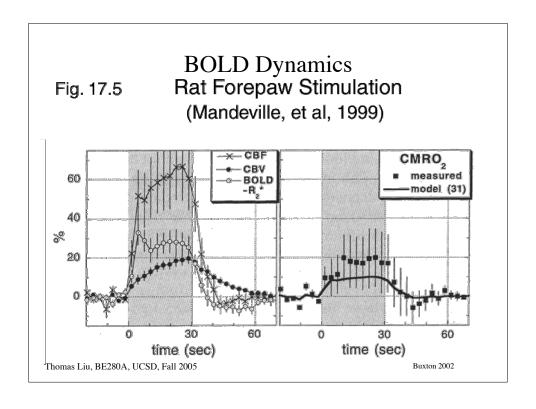
dHBO₂ is paramagnetic due to the iron atoms. As it becomes oxygenated, it becomes less paramagnetic.

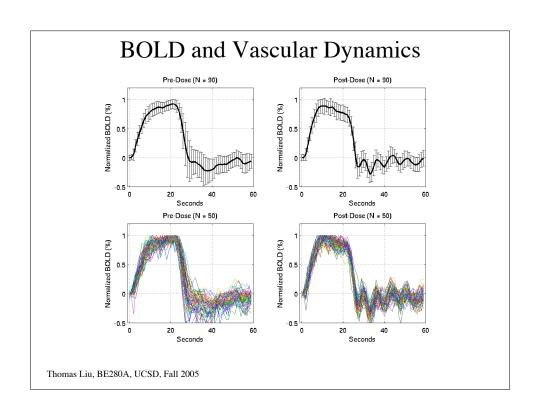
dHBO $_2$ perturbs the local magnetic fields. As blood becomes more deoxygenated, the amount of perturbation increases and there is more dephasing of the spins. Thus as dHBO $_2$ increases we find that T_2^* decreases and the amplitude exp(-TE/ T_2^*) image of a T_2^* weighted image will decrease. Conversely as dHBO $_2$ decreases, T_2^* increases and we expect the signal amplitude to go up.





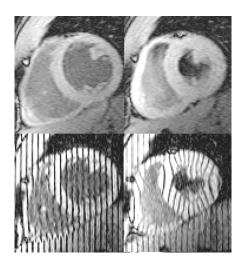






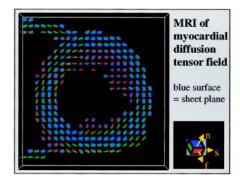
Cardiac Imaging

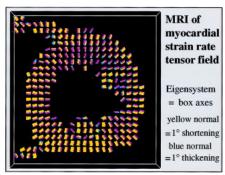
Cardiac Tagging



Thomas Liu, BE280A, UCSD, Fall 2005

Cardiac Diffusion and Strain





Dou et al, MRM 2003