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‘What is Noise?

Fluctuations in either the imaging system or the object
being imaged.

Quantization Noise: Due to conversion from analog
waveform to digital number.

Quantum Noise: Random fluctuation in the number of
photons emittted and recorded.

Thermal Noise: Random fluctuations present in all
electronic systems. Also, sample noise in MRI

Other types: flicker, burst, avalanche - observed in
semiconductor devices.

Structured Noise: physiological sources, interference
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Quantization Noise

/_\/ Signal s(t)

o 1 2 3 0 s g

n:/\_/ Quantized Signal (t)

o 1 2 3 4 s g

n/\/V\/\J\/\/U\N\/\N\/\/' Quantization noise
oos, . ! q(t)

1 2 a 4 s g

r(t) = s(t) + q(t)
Although the noise is deterministic, it is useful to model
the noise as a random process.
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Physiological Noise
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Noise and Image Quality

Figure 3.10

‘The effect of noise on image
quality: image quality
decreases rapidly with
Increasing noise increasing noise

k T ———. contamination.

Prince and Links 2005
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Thermal Noise

Fluctuations in voltage across a resistor due to random
thermal motion of electrons.

Described by J.B. Johnson in 1927 (therefore sometimes
called Johnson noise). Explained by H. Nyquist in 1928.

<V2>=4kT'R-BW

'\ )
Bandwidth

Variance in Voltage Resistance
Temperature
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Thermal Noise
<v2> =4kT-R-BW

At room temperature, noise in a 1 kQ resistor is
(V?)/BW =16x10™ V*/ Hz

In root mean squared form, this corresponds to
VIBW = 4 nV/\/Hz.

Example: For BW = 250 kHz and 2 k< resistor,
total noise voltage is

2:16x10™ -250x10° = 4 v

Thomas Liu, BE280A, UCSD, Fall 2005

Thermal Noise
Noise spectral density is independent of frequency up
to 10" Hz. Therefore it is a source of white noise.

Amplitude distribution of the noise is Gaussian.
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Signal in MRI
Recall the signal equation has the form

s,(t)=fffM(x,y,z)e'”Tz“’e'“””'exp(—jyﬂG(r)~r(r)dr}lxdydz

Faraday's Law
EMF =- %
ot

¢ = Magnetic Flux =fB,(x,y,z)‘M(x,y,z)dV
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Signal in MRI
Signal in the receiver coil
5,()= joB,, [ M(x,y,2)e"" e exp(—jyj:G(‘r)'r(r)d‘r)dV
Recall, total magnetization is proportional to B,
Also w, =yB,.

Therefore, total signal is proportional to B
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Noise in MRI

Primary sources of noise are:
1) Thermal noise of the receiver coil
2) Thermal noise of the sample.

Coil Resistance : At higher frequencies, the EM waves
tend to travel along the surface of the conductor (skin
effect). As aresult,

Rcml x ('U(I)/‘2 = <N¢2m'[> x (’U(IJ/2 o« l;s‘lz

Sample Noise: Noise is white, but differentiation
process due to Faraday's law introduces a multiplication
by w,. As a result, the noise variance from the sample
is proportional to w;.

(Vo) =) o= B]

sample
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SNR in MRI
signal amplitude " B}

~ standard deviation of noise \/aB“)’z +pB;

If coil noise dominates
SNR = B]'*
If sample noise dominates

SNR « B,
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Random Variables

A random variable X is characterized by its cumulative
distribution function (CDF)

Pr(X s x)=F,(x)

The derivative of the CDF is the probability density
function(pdf)

fo(x) = dF,(x)/dx

The probability that X will take on values between two
limits x, and x, is

Pr(x, = X=x,) = F,(x,) - F,(x,) = f fo(x)dx
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Mean and Variance
by = E[X]
= f : Xfy (x)dx
oy =Var[X]
= E[(X - )]
= [7 (=) fy()dx

= E[X’]-

Thomas Liu, BE280A, UCSD, Fall 2005

Gaussian Random Variable

Sfx(x)= \/2177 eXP(—(X -w’ /(202))
o’
u

Uy =
oy =0
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Independent Random Variables

fx“xz(xwxz) = fx‘ (Xy)f)(l (x,)
E[X,X,]= E[X]E[X,]

LetY = X, + X, then
uy = EIY]
= E[X,]+ E[X,]
=W+,
E[Y?]= E[X[1+2E[X,1E[X,]+ E[X?] = E[X]1+ 2uu, + E[X]]
oy =ElY’)-15
= E[X71+2uu, + E[X21- 1 - 18 = 2uu,

2 2
=0y, +0y,
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Signal Averaging
‘We can improve SNR by averaging.
Let
Yi=Yotn
Ya=Yoth,

The sum of the two measurements is 2y, + (n, + nz).

If the noise in the measurements is independent, then
the variances sum and the total variance is 20,

SNR,, =20 _\[25NR

Tot ﬁgu

original

In general, SNR % 4N, *~Time
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Random Processes
A random process is an indexed family of random
variables

Examples :
discrete: X,,X,,...,X,
continuous : X(7)

If all the random variables share the same pdf and
take on values independently, the process is said to
be independent and identically distributed (iid).
Example: unbiased coin tosses

If the joint statistics of the process do not vary
with index, the process is said to be stationary.
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Correlation and Covariance
Correlation
R(1,,t,) = E(X(1)X"(1,))
R, j)=E(X.X,)
Covariance

Cltt) = E((X(0) - X)) (X0 - X))

CGi.j)=E((X, - X,)(X,-X)))
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Stationary Process

For a wide - sense stationary process
EX@®)=un

R(1,t,)=R(t)= E(X()X (t+ 1)) fort=1,-1¢
R(@,j)=R(m)=E(X,X,,,) form=j-i

i+m

Example : White noise process
E[X]=0
C(r) = 0%(7)
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Power Spectral Density
For a wide - sense stationary process, we can define

the Power Spectral Density as:

Sy (f)=F{R(®)} for a continuous random process
or

Sy (f) = F{R(m)} for a discrete random process

Example : White noise

Sy (f)=F{o*(D)} =0
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Vector Notation

Xl

X,

X=|"2

Xy
XX XX, - XX,
XX XX o XX,
R=E(XXH)=E .. 1 Z. 2 ) 2. N
XX XX o XX
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Example

X denotes a stationary random process with mean zero
and correlation R[m] = o?0[m]

g’ 0 - 0
R-Exx =0 T 0

0o 0 - o
=o'l
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Noise in k-space

Recall that in MRI we acquire samples in k - space.
The noise in these samples is typically well described
by an iid random process.

For Cartesian sampling, the noise in the image domain
is then also described by an iid random process.

Stk

For each point in k - space, SNR = where

G/l
S(k) is the signal and o, is the standard deviation of
each noise sample.
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Noise in image space

Noise variance per sample in k - space is o7.

Each voxel in image space is obtained from the Fourier transform

of k - space data.

Say there are N points in k - space. The overall noise variance

contribution of these N points is No7.

If we assume a point object, then all points in k - space contribute

equally to the signal, so overall signal is NS,.

Then overall SNR in image space is

sVR o0y S0
JNo, o,

Therefore, SNR increases as we increase the matrix size.
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Signal Averaging

We can improve SNR by averaging in k - space

In general, SNR «|N,,, «~/Time
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Effect of Readout Window

ADC samples acquired with sampling period At.

Thermal noise per sample is o, x Af = i

If we double length of the readout window, the

noise variance per sample decreases by two.

The noise standard deviation decreases by \/E, and
the SNR increases by \/E

In general, SNR o [Ty, =4/N; At
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SNR and Phase Encodes

Assume that spatial resolution is held constant.
‘What happens if we increase the number of phase
encodes? Recall that 6, = L Thus, increasing

k,
the number of phase encodes N, decreases Ak, and
increases FOV,.
If we double the number of phase encodes, each point
in image space has double the number of k - space lines
contributing to its signal. The noise variances sum.
The SNR therefore goes up by 2.

In general SNR « 1N,
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Overall SNR

o Signal o AxAyAz
o o

n n

SNR

Putting everything together, we find that

SNR o +[N, ,N N, At AxAyAz
=/ Measurement Time -Voxel Volume

In general,

SNR x +| Measurement Time - Voxel Volume- f(p,T},T,)
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Example
A i
| |
‘ |
Figure 7.18: Example: 256 readout samples vs 512 readout samples.

Assume same readout gradients for both sequences.
Sampling rate for sequence 2 is twice that of sequence 1.
What are the relative SNRs?
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Example

Sampling rate for sequence 2 is twice as large, so that
bandwidth is doubled. Therefore noise variance is also doubled

VRl = 2564 2564
25607 O,
VRl = 51245124 /2564

52e;) Ao, o,

Note that sequences have the same resolution, but sequence 2 has
twice the FOV.
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