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What is Noise?
Fluctuations in either the imaging system or the object
being imaged.

Quantization Noise: Due to conversion from analog
waveform  to digital number.

Quantum Noise: Random fluctuation in the number of
photons emittted and recorded.

Thermal Noise:   Random fluctuations present in all
electronic systems.  Also,  sample noise in MRI

Other types: flicker, burst, avalanche  - observed in
semiconductor devices.

Structured Noise: physiological sources, interference
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Quantization Noise

Signal s(t)

r(t) = s(t) + q(t)
Although the noise is deterministic, it is useful to model 
the noise as a random process. 

Quantization noise
q(t)

Quantized Signal r(t)



2

Thomas Liu, BE280A, UCSD, Fall 2005

Physiological Noise
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Image Number (4 Hz)

Perfusion time series: Before Correction  (cc = 0.15)

Perfusion time series: After Correction  (cc = 0.71)

Perfusion Time Series
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Noise and Image Quality

Prince and Links 2005

Thomas Liu, BE280A, UCSD, Fall 2005

Thermal Noise
Fluctuations in voltage across a resistor due to random
thermal motion of electrons.
Described by J.B. Johnson  in 1927 (therefore sometimes
called Johnson noise). Explained by H. Nyquist in 1928.

€ 

V 2 = 4kT ⋅ R ⋅BW

Variance in  Voltage Resistance

Bandwidth

Temperature
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Thermal Noise

€ 

V 2 = 4kT ⋅ R ⋅BW

At room temperature, noise in a 1 kΩ resistor is
V 2 /BW =16×10−18  V 2 /Hz

In root mean squared form, this corresponds to 
V/BW =  4 nV/ Hz .

Example :  For BW =  250 kHz and 2 kΩ resistor, 
total noise voltage is 

2 ⋅16×10-18 ⋅250×103 = 4 µV
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Thermal Noise

€ 

Noise spectral density is independent of frequency up
to 1013  Hz.  Therefore it is a source of white noise.

Amplitude distribution of the noise is Gaussian.
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Signal in MRI

€ 

Recall the signal equation has the form
sr (t) = M (x,y,z)e− t /T2 ( r )e− jω0t exp − jγ G τ( )

0

t

∫ ⋅ r(τ )dτ 
 
  

 
 ∫∫∫ dxdydz

€ 

Faraday's Law
EMF = −

∂φ
∂t

φ = Magnetic Flux = B1(x,y,z) ⋅M(x,y,z)dV∫

B0
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Signal in MRI

€ 

Signal in the receiver coil
sr (t) = jω0B1xy M (x,y,z)e− t /T2 ( r )e− jω0t exp − jγ G τ( )

0

t

∫ ⋅ r(τ )dτ 
 
  

 
 ∫ dV

Recall, total magnetization is proportional to B0

Also ω0 = γB0 .

Therefore, total signal is proportional to B0
2
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Noise in MRI

€ 

Primary sources of noise are :
1) Thermal noise of the receiver coil
2) Thermal noise of the sample. 

Coil Resistance :  At higher frequencies, the EM waves
tend to travel along the surface of the conductor (skin
effect).  As a result, 
Rcoil  ∝  ω0

1/2  ⇒ Ncoil
2  ∝  ω0

1/2 ∝B0
1/ 2

Sample Noise :  Noise is white, but differentiation
process due to Faraday's law introduces a multiplication
by ω0 . As a result, the noise variance from the sample
is proportional to ω0

2 .

Nsample
2  ∝ω0

2 ∝  B0
2

Thomas Liu, BE280A, UCSD, Fall 2005

SNR in MRI

€ 

SNR =
signal amplitude

standard deviation of noise
∝

B0
2

αB0
1/ 2 + βB0

2

If coil noise dominates

SNR∝B0
7 / 4

If sample noise dominates

SNR∝B0
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Random Variables

€ 

A random variable X is characterized by its cumulative
distribution function (CDF)

Pr(X ≤ x) = FX (x)

The derivative of the CDF is the probability density
function(pdf)

fX (x) = dFX (x) /dx

The probability that X will take on values between two
limits x1 and x2 is 

Pr(x1 ≤ X ≤ x2) = FX (x2) −FX (x1) = fX (x)dx
x1

x2∫

Thomas Liu, BE280A, UCSD, Fall 2005

Mean and Variance

€ 

µX = E[X]

= xfX (x)dx−∞

∞

∫

σX
2 =Var[X]

= E[ X −µX( )2]

= (x −µX )
2 fX (x)dx−∞

∞

∫
= E[X 2]−µX

2
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Gaussian Random Variable

€ 

fX (x) =
1
2πσ 2

exp −(x −µ)2 / 2σ 2( )( )

µX = µ

σX
2 =σ 2
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Independent Random Variables

€ 

fX1 ,X 2
(x1,x2) = fX1

(x1) fX 2
(x2)

E[X1X2] = E[X1]E[X2]

Let Y =  X1 + X2 then 
µY = E[Y ]

= E[X1] + E[X2]
= µ1 + µ2

E[Y 2] = E[X1
2] + 2E[X1]E[X2] + E[X2

2] = E[X1
2] + 2µ1µ2 + E[X2

2]
σY

2 = E[Y 2]−µY
2

= E[X1
2] + 2µ1µ2 + E[X2

2]−µ1
2 −µ2

2 − 2µ1µ2

=σX1

2 +σX 2

2
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Signal Averaging

€ 

€ 

We can improve SNR  by averaging. 
Let 
y1 = y0 + n1

y2 = y0 + n2

The sum of the two measurements is 2y0 + n1 + n2( ).

If the noise in the measurements is independent, then 
the variances sum and the total variance is 2σ n

2

SNRTot =
2y0

2σ n

= 2SNRoriginal

In general, SNR∝ Nave ∝ Time
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Random Processes

  

€ 

A random process is an indexed family of random
variables

Examples :  
discrete :   X1 ,X2 ,K,XN
continuous :  X(t)

If all the random variables share the same pdf and 
take on values independently, the process is said to
be independent and identically distributed (iid).

Example :  unbiased coin tosses

If the joint statistics of the process do not vary
with index, the process is said to be stationary.
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Correlation and Covariance

€ 

Correlation

R(t1 ,t2) = E(X(t1)X
∗ (t2))

R(i, j) = E(Xi X j )

Covariance

C(t1 ,t2) = E X(t1) − X (t1)( ) X(t2) − X (t2)( )
∗ 

 
  

 
 

C(i, j) = E Xi − X i( ) X j − X j( )( )

Thomas Liu, BE280A, UCSD, Fall 2005

Stationary Process

€ 

For a wide - sense stationary process
E(X(t)) = µ

R(t, t2) = R(τ ) = E(X(t)X ∗(t + τ)) for τ = t2 − t
R(i, j) = R(m) = E(XiXi+m ) for m = j − i

Example :  White noise process
E[X] = 0
C(τ) =σ 2δ(τ )
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Power Spectral  Density

€ 

For a wide - sense stationary process, we can define
the Power Spectral Density as :  

SX ( f ) = F R(τ ){ }  for a continuous random process 
or 
SX ( f ) = F R(m){ } for a discrete random process 

Example :  White noise
SX ( f ) = F σ 2δ(τ ){ } =σ 2
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Vector Notation

  

€ 

X =

X1
X2
M

XN

 

 

 
 
 
 

 

 

 
 
 
 

R = E(XXH ) = E

X1X1
∗ X1X2

∗ L X1XN
∗

X2X1
∗ X2X2

∗ L X2XN
∗

M M O M

XN X1
∗ XN X2

∗ L XN XN
∗
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Example

  

€ 

X denotes a stationary random process with mean zero
and correlation R[m] =σ 2δ[m]

R = E(XXH ) =

σ 2 0 L 0
0 σ 2 L 0
M M O M

0 0 L σ 2

 

 

 
 
 
 

 

 

 
 
 
 

    
   =σ 2I
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Noise in k-space

€ 

€ 

Recall that in MRI we acquire samples in k - space.
The noise in these samples is typically well described
by an iid random process. 
For Cartesian sampling, the noise in the image domain
is then also described by an iid random process.

For each point in k - space, SNR = S(k)
σ n

 where

S(k) is the signal and  σ n  is the standard deviation of
each noise sample.
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Noise in image space

€ 

€ 

Noise  variance per sample in k - space is σ n
2.

Each voxel in image space is obtained from the Fourier transform 
of k - space data. 
Say there are N points in k - space.  The overall noise variance
contribution of these N points is Nσ n

2.
If we assume a point object, then all points in k - space contribute 
equally to the signal, so overall signal is NS0. 
Then  overall SNR in image space is 

SNR∝ NS0

Nσ n

= N S0

σ n

Therefore, SNR increases as we increase the matrix size. 

Thomas Liu, BE280A, UCSD, Fall 2005

Signal Averaging

€ 
€ 

We can improve SNR  by averaging in k - space
In general, SNR∝ Nave ∝ Time
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Effect of Readout Window

€ 

€ 

ADC samples acquired with sampling period Δt.

Thermal noise per sample is σ n
2 ∝Δf =

1
Δt

If we double length of the readout window, the
noise variance per sample decreases by two.

The noise standard deviation decreases by 2, and
the SNR increases by 2.

In general, SNR∝ TRead = NkxΔt
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SNR and Phase Encodes

€ 

€ 

Assume that spatial resolution is held constant.
What happens if we increase the number of phase
encodes? Recall that δy =

1
Wky

.  Thus, increasing

the number of phase encodes NPE , decreases Δky  and
increases FOVy .

If we double the number of phase encodes, each point
in image space has double the number of k - space lines
contributing to its signal.  The noise variances sum. 
The SNR therefore goes up by 2.

In general SNR∝ NPE  
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Overall SNR

€ 

€ 

SNR∝ Signal
σ n

∝
ΔxΔyΔz
σ n

Putting everything together, we find that

SNR∝ NaveNxNPEΔtΔxΔyΔz

      = Measurement Time ⋅Voxel Volume

In general,

SNR∝ Measurement Time ⋅Voxel Volume ⋅ f (ρ,T1 ,T2)
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Example

€ 

Assume same readout gradients for both sequences.
Sampling rate for sequence 2 is twice that of sequence 1.
What are the relative SNRs?

Nishimura 1996
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Example

€ 

€ 

Sampling rate for sequence 2 is twice as large, so that
bandwidth is doubled.  Therefore noise variance is also doubled

SNR1 =  256A
256σ n

2
=

256A
σ n

SNR1 =  512A
512 2σ n

2( )
=

512A
2σ n

=
256A
σ n

Note that sequences have the same resolution, but sequence 2 has
twice the FOV. 


