Preliminary Syllabus

Week 1
Thursday 9/22
Course Policies, Overview of Imaging Modalities, Introduction to MRI

Week 2
Tuesday 9/27
MRI: Overview, Basic physics, Bloch Equation
Thursday 9/29
MRI: Gradients, Signal Equation, Spin-warp pulse sequence

Week 3
Tuesday 10/4
Fourier Transforms: Overview and basic properties
Thursday 10/6
Linear systems, 1D and 2D convolution

Week 4
Tuesday 10/11
Fourier Transforms and Convolution, Duality, Windowing, Resolution.
Thursday 10/13
Sampling: 1D and 2D sampling, Whitaker-Shannon sampling theorem, aliasing

Week 5
Tuesday 10/18
Sampling Continued, Discrete Fourier Transform
Thursday 10/20
MRI: Resolution and sampling requirements, slice selection, image contrast;

Week 6
Tuesday 10/25
Noise and SNR
Thursday 10/27
MRI: Applications

Week 7
Tuesday 11/1
Special Topic: TBD
Thursday 11/3
X-rays

Week 8
Tuesday 11/8
CT: Overview and basic Physics, Radon transform
Thursday 11/10
CT: Filtered back projection, noise considerations

Week 9
Tuesday 11/15
Ultrasound: Overview and basic physics
Thursday 11/17
Ultrasound: Beam formation, Scanning modes

Week 10
Tuesday 11/22
Ultrasound: Phased Array systems, Doppler
Thursday 11/24
NO CLASS. Thanksgiving Holiday

Week 11
Tuesday 11/29
Nuclear Imaging
Thursday 12/1
Special Topic: TBD