
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Poisson Process

\qquad

Events occur at random instants of time at an average rate of λ events per second.

Examples: arrival of customers to an ATM, emission of photons from an x -ray source, lightning strikes in a thunderstorm.

Assumptions:

1) Probability of more than 1 event in an small time interval is small
2) Probability of event occurring in a given small time interval is independent of another event occuring in other small time intervals.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { Poisson Process } \\
& P[N(t)=k]=\frac{(\lambda t)^{k}}{k!} \exp (-\lambda t) \\
& \lambda=\text { Average rate of events per second } \\
& \lambda \mathrm{t}=\text { Average number of events at time } t \\
& \lambda \mathrm{t}=\text { Variance in number of events }
\end{aligned}
$$

Probability of interarrival times
$P[T>t]=e^{-\lambda t}$

TT Liu, BE280A, UCSD Fall 2005

Example

A service center receives an average of 15 inquiries per minute. Find the probability that 3 inquiries arrive in the first 10 seconds.
$\lambda=15 / 60=0.25$
$\lambda t=0.25(10)=2.5$
$P[N(t=10)=3)=\frac{(2.5)^{3}}{3!} \exp (-2.5)=.2138$

TT Liu, BE280A, UCSD Fall 2005
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quantum Noise

Fluctuation in the number of photons emitted by the x -ray source and recorded by the detector.
$P_{k}=\frac{N_{0}^{k} \exp \left(-N_{0}\right)}{k!}$
P_{k} : Probability of emitting k photons in a given time interval.
N_{0} : Average number of photons emitted in that time interval $=\lambda t$

Transmitted Photons

\qquad
$Q_{k}=\frac{\left(p N_{0}\right)^{k} \exp \left(-p N_{0}\right)}{k!}$
Q_{k} : Probability of k photons making it through object \qquad
N_{0} : Average number of photons emitted in that time interval $=\lambda t$ \qquad
$p=\exp \left(-\int \mu d z\right)=$ probability of proton being transmitted \qquad
\qquad
\qquad
TTLiu, BE280A, UCSD Fall 2005

Example

Over the diagnostic energy range, the photon density is approximately 2.5×10^{10} photons $/ \mathrm{cm}^{2} / R$ where R stands for roentgen (unit for X -ray exposure).

A typical chest x-ray has an exposure of 50 mR .
For transmission in regions devoid of bone,
$p=\exp \left(-\int \mu d z\right) \approx 0.05$
What are the mean and standard deviation of the number of photons that make it it to a $1 \mathrm{~mm}^{2}$ detector?
$p N_{0}=0.05 \cdot 2.5 \times 10^{10} \cdot .050 \cdot(.1)^{2}=6.25 \times 10^{5}$ photons mean $=6.25 \times 10^{5}$ photons standard deviation $=\sqrt{6.25} \times 10^{5}=790$ photons TT Liu, BE280A, UCSD Fall 2005
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Contrast and SNR for X-Rays

\qquad
Contrast $=C=\frac{\Delta I}{\bar{I}}$
$S N R=\frac{\Delta I}{\sigma_{I}}$
$=\frac{\text { Mean difference in \# of photons }}{}$
$=\overline{\text { Standard Deviation of \# photons }}$
$=\frac{C p N_{0}}{\sqrt{p N_{0}}}$
$=C \sqrt{p N_{0}}$

TT Liu, BE280A, UCSD Fall 2005
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Signal to Noise Ratio for CT

\qquad
$S N R=\frac{C \bar{\mu}}{\sigma_{\mu}}$
$=\frac{C \bar{\mu}}{\sqrt{\frac{T}{M \bar{N}} \frac{2 \pi^{2} \rho_{0}^{3}}{3}}}$
\qquad
$\approx 0.4 k C \bar{\mu} d^{3 / 2} \sqrt{M \bar{N} / T}$
$C=$ contrast
$\bar{\mu}=$ mean attenuation
$\overline{\mathrm{N}}=$ mean number of transmitted photon \qquad
$\mathrm{T}=$ spacing between detectors
$\mathrm{M}=$ number of views
$\rho_{0}=$ bandwidth of Ram-Lak filter $\approx \mathrm{k} / \mathrm{d}$ where $\mathrm{d}=$ width of detector
$\mathrm{k}=$ scaling constant, order unity
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

