3. RF Pulse

The pulse can be written as:

$$
m(t)=A\left(\delta(t)+\frac{2}{3}(\delta(t-\tau / 6)+\delta(t+\tau / 6))+\frac{1}{3}(\delta(t-\tau / 3)+\delta(t+\tau / 3))\right) * \operatorname{rect}\left(\frac{t}{\tau / 8}\right)
$$

The 1D Fourier transform is

$$
M(f)=A \frac{\tau}{8} \operatorname{sinc}(f \tau / 8)\left(1+\frac{4}{3} \cos (2 \pi f \tau / 6)+\frac{2}{3} \cos (2 \pi f \tau / 3)\right)
$$

The slice profile is obtained with the substitution $f=-\frac{\gamma}{2 \pi} G_{z} z$. A plot of the profile as a function of $f \tau=-\frac{\gamma}{2 \pi} G_{z} z \tau$ is shown below, with the sinc and cosine components shown in dotted and dashed lines, respectively. Zeros due to the sinc function occur at multiples of $f \tau=8$. To understand the presence of the other zeros at multiples of $f \tau=2$ and the peaks near multiples of $f \tau=6$, note that we can also write

$$
m(t)=A\left(\left(\operatorname{rect}\left(\frac{t}{\tau / 2}\right) * \operatorname{rect}\left(\frac{t}{\tau / 2}\right)\right) \cdot \sum_{n} \delta(t-n \tau / 6)\right) * \operatorname{rect}\left(\frac{t}{\tau / 8}\right)
$$

which has a transform

$$
M(f)=A \frac{\tau}{8} \frac{\tau}{2} \frac{6}{\tau} \operatorname{sinc}(f \tau / 8)\left(\operatorname{sinc}^{2}(f \tau / 2) * \sum \delta(f-6 n / \tau)\right)
$$

