Bioengineering 280A
Principles of Biomedical Imaging
Fall Quarter 2007
CT/Fourier Lecture 4

Topics
- Sampling Requirements in CT
- Sampling Theory
- Aliasing

CT Sampling Requirements
What should the size of the detectors be?
How many detectors do we need?
How many views do we need?

View Aliasing

Kak and Slaney
Analog vs. Digital

The Analog World:
Continuous time/space, continuous valued signals or images, e.g. vinyl records, photographs, x-ray films.

The Digital World:
Discrete time/space, discrete-valued signals or images, e.g. CD-Roms, DVDs, digital photos, digital x-rays, CT, MRI, ultrasound.

Artifacts

Object

Effect of Noise

Aliasing due to insufficient number of detectors

Aliasing due to insufficient number of views

The Process of Sampling

\[g(x) \] sample

\[g[n]=g(n \Delta x) \]
Questions

How finely do we need to sample?

What happens if we don’t sample finely enough?

Can we reconstruct the original signal or image from its samples?
Sampling in k-space

Comb Function

\[\text{comb}(x) = \sum_{n=-\infty}^{\infty} \delta(x - n) \]

Other names: Impulse train, bed of nails, shah function.

Scaled Comb Function

\[\text{comb} \left(\frac{x}{\Delta x} \right) = \sum_{n=-\infty}^{\infty} \delta \left(\frac{x}{\Delta x} - n \right) \]

\[= \sum_{n=-\infty}^{\infty} \delta \left(\frac{x - n\Delta x}{\Delta x} \right) \]

\[= \Delta x \sum_{n=-\infty}^{\infty} \delta(x - n\Delta x) \]

1D spatial sampling

\[g_3(x) = g(x) \frac{1}{\Delta x} \text{comb} \left(\frac{x}{\Delta x} \right) \]

\[= g(x) \sum_{n=-\infty}^{\infty} \delta(x - n\Delta x) \]

\[= \sum_{n=-\infty}^{\infty} g(n\Delta x) \delta(x - n\Delta x) \]

Recall the sifting property \(\int g(x) \delta(x - a) \, dx = g(a) \)

But we can also write \(\int g(a) \delta(x - a) = g(a) \int \delta(x - a) = g(a) \)

So, \(g(x) \delta(x - a) = g(a) \delta(x - a) \)
1D spatial sampling

\[g(x) \]

\[\text{comb}(x/\Delta x)/\Delta x \]

\[g_s(x) \]

Fourier Transform of comb(x)

\[F[\text{comb}(x)] = \text{comb}(k_x) \]

\[= \sum_{n=-\infty}^{\infty} \delta(k_x - n) \]

\[F\left[\frac{1}{\Delta x} \text{comb}\left(\frac{x}{\Delta x} \right) \right] = \frac{1}{\Delta x} \text{comb}(k_x \Delta x) \]

\[= \sum_{n=-\infty}^{\infty} \delta(k_x \Delta x - n) \]

\[= \frac{1}{\Delta x} \sum_{n=-\infty}^{\infty} \delta(k_x - \frac{n}{\Delta x}) \]

Fourier Transform of comb(x/\Delta x)

\[F[\text{comb}(x/\Delta x)] = \frac{1}{\Delta x} \text{comb}\left(\frac{x}{\Delta x} \right) \]

\[= G(k_x) \frac{1}{\Delta x} \sum_{n=-\infty}^{\infty} \delta\left(k_x - \frac{n}{\Delta x} \right) \]

\[= \frac{1}{\Delta x} \sum_{n=-\infty}^{\infty} G(k_x) \delta\left(k_x - \frac{n}{\Delta x} \right) \]

\[= \frac{1}{\Delta x} \sum_{n=-\infty}^{\infty} G\left(k_x - \frac{n}{\Delta x} \right) \]

Fourier Transform of \(g_s(x) \)

\[F[g_s(x)] = F\left[g(x) \frac{1}{\Delta x} \text{comb}\left(\frac{x}{\Delta x} \right) \right] \]

\[= G(k_x) F\left[\frac{1}{\Delta x} \text{comb}\left(\frac{x}{\Delta x} \right) \right] \]

\[= G(k_x) \frac{1}{\Delta x} \sum_{n=-\infty}^{\infty} \delta\left(k_x - \frac{n}{\Delta x} \right) \]

\[= \frac{1}{\Delta x} \sum_{n=-\infty}^{\infty} G(k_x) \delta\left(k_x - \frac{n}{\Delta x} \right) \]

\[= \frac{1}{\Delta x} \sum_{n=-\infty}^{\infty} G\left(k_x - \frac{n}{\Delta x} \right) \]
Fourier Transform of $g_S(x)$

$$G(k_x)$$

$$1/\Delta x$$

Nyquist Condition

$$G(k_x)$$

$$1/\Delta x$$

To avoid overlap, we require that $1/\Delta x > 2B$ or $K_S > 2B$ where $K_S = 1/\Delta x$ is the sampling frequency

Example

Assume that the highest spatial frequency in an object is $B = 2 \text{ cm}^{-1}$. Thus, smallest spatial period is 0.5 cm. Nyquist theorem says we need to sample with $\Delta x < 1/2B = 0.25 \text{ cm}$

This corresponds to 2 samples per spatial period.

Reconstruction from Samples

$$G_S(k_x)$$

$$K_S = 1/\Delta x$$

Multiply by $(1/K_S) \text{rect}(k/k_S)$

$$(1/K_S) G_S(k_x) \text{rect}(k/k_S) = G(k_x)$$
Example Cosine Reconstruction

\[
\cos(2\pi k_0 x) = \sum_{k=-\infty}^{\infty} \delta(k - k_0) \delta(k - k_0)
\]

Reconstruction from Samples

If the Nyquist condition is met, then
\[
\hat{G}_S(k) = \frac{1}{K_S} G_S(k) \text{rect}(k / K_S) = G(k)
\]

And the signal can be reconstructed by convolving the sample with a sinc function
\[
\hat{g}_S(x) = g_S(x) * \text{sinc}(K_s x)
\]

Cosine Example with \(K_S=2k_0\)

\[
\text{sinc}(K_s x) = \text{sinc}(x / \Delta x)
\]

Reconstruction from Samples

\[
g(x) \rightarrow g_S(x) \rightarrow \hat{g}_S(x)
\]
Aliasing occurs when the Nyquist condition is not satisfied. This occurs for $K_s \leq 2B$.

\begin{align*}
G(k_s) &= k_s \\
-\B & \quad \B \\
K_s
\end{align*}
1. Consider the function \(g(x) = \cos(2\pi k_0 x) \). Sketch this function. You sample this signal in the spatial domain with a sampling rate \(K_s = 1/\Delta x \) (e.g., samples spaced at intervals of \(\Delta x \)). What is the minimum sampling rate that you can use without aliasing? Give an intuitive explanation for your answer.

Detector Sampling Requirements

- Sampling interval \(\Delta r \)
- Beamwidth \(\Delta s \)
Smoothing of Projection

\[g_s(l, \theta) = \text{rect}(l/\Delta s) \ast g(l, \theta) \]

\[G_s(k_x, \theta) = \Delta s \text{sinc}(k_x \Delta s) G(k_x, \theta) \]

Sampling Requirements

Detectors \(\Delta x \leq \Delta s/2 \)

Sampled Smoothed Projection

View Aliasing

Kak and Slaney
View Sampling Requirements

View Sampling -- how many views?

Basic idea is that to make the maximum angular sampling the same as the projection sampling.

\[
\frac{\pi \text{FOV}}{N_{\text{views}}} = \Delta r
\]

\[
N_{\text{views,360}} = \frac{\pi \text{FOV}}{\Delta r} = \pi N_{\text{proj}} \quad \text{(for 360 degrees)}
\]

\[
N_{\text{views,180}} = \frac{\pi N_{\text{proj}}}{2} \quad \text{(for 180 degrees)}
\]

Example

beamwidth \(\Delta s = 1 \) mm
Field of View (FOV) = 50 cm
\(\Delta r = \Delta s/2 = 0.5 \) mm

500 mm/ 0.5 mm = \(N = 1000 \) detector samples
\(\pi N = 3146 \) views per 360 degrees

\(~ 1500 \) views per 180 degrees

CT "Rule of Thumb"

\(N_{\text{view}} = N_{\text{detectors}} = N_{\text{pixels}} \)