HOMEWORK #4
Due at the start of Class on Thursday 11/8/07

Readings:
Section 2.8 and review Chapter 6 as necessary.

Problems:
1. Let $G(k,\theta)$ be the 1-D Fourier transform of the projection $g(l,\theta)$.
 a) Show that $g(l,\theta + \pi) = g(-l,\theta)$
 b) Next, show that $G(k,\theta + \pi) = G(-k,\theta)$
2. Problem 2.23
3. Problem 2.24
4. Consider the CT k-space filter $G(k) = |k| w(k)$ where $w(k)$ is a windowing function. For each of the following window functions, sketch the k-space filter and derive its inverse Fourier transform.
 a) The Ram-Lak Filter with $w(k) = \text{rect}\left(\frac{k}{2k_{\text{max}}}\right)$
 b) A Hanning window defined as $w(k) = \text{rect}\left(\frac{k}{2k_{\text{max}}}\right) 0.5 + 0.5\cos\left(\frac{\pi k}{k_{\text{max}}}\right)$
 c) Use MATLAB to plot out and compare the inverse transforms from parts (a) and (b). Comment on the relative advantages and disadvantages of the two filters to CT reconstruction.
5. A parallel beam CT imaging system is used to image an object defined as:
 $f(x,y) = \text{rect}(x,y) + \text{rect}(x,y)*[(\delta(x-2) + \delta(x+2))\delta(y)]*[(\delta(y-2) + \delta(y+2))\delta(x)]$
 a) Sketch the object and draw the projections of the object at 0 degrees and 45 degrees.
 b) Derive the Fourier transform of the object
 c) Show that the Projection-slice theorem holds for the projections at 0 and 45 degrees.
6. (20 pts) Consider the object $f(x,y) = \cos\left(2\pi x + \frac{2}{\sqrt{3}}\pi y\right)$
 a) Sketch the object.
 b) Consider sampling the object in both the x and y directions with sample intervals of Δ_x and Δ_y, respectively. Indicate what sample intervals should be used to avoid aliasing.
 c) Now consider imaging the object with a parallel beam CT imaging system. At what angle will the projection be non-zero?
 d) We now wish to sample the non-zero projection. What sampling interval should we use to avoid aliasing?
 e) Now consider the object $g(x,y) = (f(x,y))^2$. Answer items (c) and (d) for this object.