Fourier Sampling

Instead of sampling the signal, we sample its Fourier Transform.

\[G_s(k_x) = \frac{1}{\Delta k_x} \text{comb}(k_x/\Delta k_x) \]

\[G_s(k_x) = G(k_x) \frac{1}{\Delta k_x} \text{comb}(k_x/\Delta k_x) \]

\[= G(k_x) \sum_{n=-\infty}^{\infty} \delta(k_x - n\Delta k_x) \]

\[= \sum_{n=-\infty}^{\infty} G(n\Delta k_x) \delta(k_x - n\Delta k_x) \]
Fourier Sampling -- Inverse Transform

\[g_s(x) = F^{-1}[G_s(k_x)] \]
\[= F^{-1}\left[G(k_x)\frac{1}{\Delta k_x} \text{comb}\left(\frac{k_x}{\Delta k_x}\right)\right] \]
\[= F^{-1}[G(k_x)] + F^{-1}\left[\frac{1}{\Delta k_x} \text{comb}\left(\frac{k_x}{\Delta k_x}\right)\right] \]
\[= g(x) + \text{comb}(x\Delta k_x) \]
\[= g(x) + \sum_{n=-\infty}^{\infty} \delta(x - n\Delta k_x) \]
\[= g(x) + \frac{1}{\Delta k_x} \sum_{n=-\infty}^{\infty} g(x - n\Delta k_x) \]
\[= \frac{1}{\Delta k_x} \sum_{n=-\infty}^{\infty} g(x - n\Delta k_x) \]

Nyquist Condition

To avoid overlap, \(1/\Delta k_x > \text{FOV}\), or equivalently, \(\Delta k_x < 1/\text{FOV}\)

Aliasing

Aliasing occurs when \(1/\Delta k_x < \text{FOV}\)

Intuitive view of Aliasing

\[k_x = 2/\text{FOV} \]
\[k_x = 1/\text{FOV} \]
Aliasing

\[\Delta B(x) = G_k x \]

Aliasing Example

\[\Delta k = 1 \]

\[\frac{1}{\Delta k} = 1 \]

- Slower
- Faster

2D Comb Function

\[
\text{comb}(x, y) = \sum_{m} \sum_{n} \delta(x - m, y - n)
\]

\[
= \sum_{m} \sum_{n} \delta(x - m) \delta(y - n)
\]

\[
= \text{comb}(x) \text{comb}(y)
\]

Scaled 2D Comb Function

\[
\text{comb}(x/\Delta x, y/\Delta y) = \text{comb}(x/\Delta x) \text{comb}(y/\Delta y)
\]

\[
= \Delta x \Delta y \sum_{m} \sum_{n} \delta(x - m\Delta x) \delta(y - n\Delta y)
\]

\[
\Delta x
\]

\[
\Delta y
\]
2D k-space sampling

\[G_s(k_x, k_y) = G(k_x, k_y) \frac{1}{\Delta k_x \Delta k_y} \text{comb} \left(\frac{k_x}{\Delta k_x}, \frac{k_y}{\Delta k_y} \right) \]

\[= G(k_x, k_y) \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(k_x - m\Delta k_x, k_y - n\Delta k_y) \]

\[= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} G(m\Delta k_x, n\Delta k_y) \delta(k_x - m\Delta k_x, k_y - n\Delta k_y) \]

Nyquist Conditions

\[
\begin{align*}
\frac{1}{\Delta k_x} & > \text{FOV}_x \\
\frac{1}{\Delta k_y} & > \text{FOV}_y \\
\text{FOV}_x & > \frac{1}{\Delta k_x} \\
\text{FOV}_y & > \frac{1}{\Delta k_y}
\end{align*}
\]
Windowing

Windowing the data in Fourier space

\[G_w(k_x, k_y) = G(k_x, k_y)W(k_x, k_y) \]

Results in convolution of the object with the inverse transform of the window

\[g_w(x, y) = g(x, y) * w(x, y) \]

Windowing Example

\[W(k_x, k_y) = \text{rect}(\frac{k_x}{W_x})\text{rect}(\frac{k_y}{W_y}) \]

\[w(x, y) = F^{-1}[\text{rect}(\frac{k_x}{W_x})\text{rect}(\frac{k_y}{W_y})] \]

\[= W_xW_y\text{sinc}(W_x x)\text{sinc}(W_y y) \]

\[g_w(x, y) = g(x, y) * W_xW_y\text{sinc}(W_x x)\text{sinc}(W_y y) \]
Windowing Example

\[g(x, y) = (\delta(x) + \delta(x - 1))h(y) \]
\[g_w(x, y) = (\delta(x) + \delta(x - 1))h(y) * W_kx W_ky \sin(W_kx x) \sin(W_ky y) \]
\[= W_kx W_ky \left(\delta(x) + \delta(x - 1) \right) \sin(W_kx x) \sin(W_ky y) \]
\[= W_kx W_ky \left(\sin(W_kx x) + \sin(W_kx (x - 1)) \right) \sin(W_ky y) \]

Resolution and spatial frequency

With a window of width \(W_kx \), the highest spatial frequency is \(W_kx / 2 \).
This corresponds to a spatial period of \(2 / W_kx \).

\[\frac{1}{W_kx} = \text{Effective Width} \]

Sampling and Windowing

Effective Width

\[w_E = \frac{1}{w(0)} \int_{-\infty}^{\infty} w(x) dx \]

Example

\[w_w = \frac{1}{1} \int_{-\infty}^{\infty} \text{sinc}(W_kx x) dx \]
\[= \text{sinc}(W_kx x) \left[\frac{1}{W_kx} \right]_{-\infty}^{\infty} \]
\[= \frac{1}{W_kx} \]

\[\frac{1}{W_kx} \]

\[\frac{1}{W_kx} \]

\[\frac{1}{W_kx} \]

\[\frac{1}{W_kx} \]
Sampling and Windowing

Sampling and windowing the data in Fourier space

\[G_{xy}(k_x, k_y) = G(k_x, k_y) \frac{1}{\Delta k_x \Delta k_y} \text{comb} \left(\frac{k_x}{\Delta k_x}, \frac{k_y}{\Delta k_y} \right) \text{rect} \left(\frac{k_x}{W_{k_x}}, \frac{k_y}{W_{k_y}} \right) \]

Results in replication and convolution in object space.

\[g_{xy}(x, y) = W_{k_x} W_{k_y} g(x, y) * \text{comb}(\Delta k_x, \Delta k_y) * \text{sinc}(W_{k_x} x) \text{sinc}(W_{k_y} y) \]

Sampling in \(k_x \)

\[k_x = \frac{M}{2\Delta k_x} \]

\[\text{FOV}_x = \frac{1}{\Delta k_x} \]

Sampling in \(k_y \)

\[k_y = \frac{N}{2\Delta k_y} \]

\[\text{FOV}_y = \frac{1}{\Delta k_y} \]

Sampling in \(k_x \)

One I,Q sample every \(\Delta t \)

\[M = I + jQ \]

Note: In practice, there are number of ways of implementing this processing.

Sampling in \(k_y \)

\[\Delta k_y = \frac{\gamma}{2\pi} G_{xy} \tau_y \]
Goal:

\[\text{FOV}_x = \text{FOV}_y = 25.6 \text{ cm} \]

\[\delta_x = \delta_y = 0.1 \text{ cm} \]

Readout Gradient:

\[\frac{1}{W_x} = \frac{1}{2k_{x,max}} = \frac{1}{\frac{\gamma}{2\pi} G_{x} \tau_x} \]

\[\tau_x = \frac{1}{\delta_x} \frac{\gamma}{2\pi} G_{x} = \frac{1}{(0.1 \text{ cm})(4257 \text{ G/cm}^2)(0.28675 \text{ G/cm})} = 8.192 \text{ ms} = N_{\text{read}} \Delta t \]

where

\[N_{\text{read}} = \frac{\text{FOV}}{\delta_x} = 256 \]

Phase-Encode Gradient:

\[\frac{1}{W_y} = \frac{1}{2k_{y,max}} = \frac{1}{\frac{\gamma}{2\pi} G_{y} \tau_y} \]

\[\tau_y = \frac{1}{\delta_y} \frac{\gamma}{2\pi} G_{y} = \frac{1}{(0.1 \text{ cm})(4257 \text{ G/cm}^2)(0.28675 \text{ G/cm})} = 2.402 \times 10^{-3} \text{ s} \]

\[= 2.2402 \times 10^{-7} \text{ T/cm} \]

\[= 0.00224 \text{ G/cm} \]
Example

Phase-Encode Gradient:

\[
\delta_y = \frac{1}{2\pi} 2 G_y \tau_y
\]

\[
G_y = \frac{1}{\delta_y} \frac{2 \tau_y}{2\pi} = \frac{1}{0.1 \text{cm}(4257 \text{ G} \cdot \text{s}^2 / \text{cm}^2)(4.096 \times 10^{-3} \text{s})} = 0.2868 \text{ G/cm}
\]

\[
N_p = \frac{\text{FOV}}{\delta_y} = 256
\]

Sampling

In practice, an even number (typically power of 2) sample is usually taken in each direction to take advantage of the Fast Fourier Transform (FFT) for reconstruction.

Example

Consider the k-space trajectory shown below. ADC samples are acquired at the points shown with \(t = 10 \mu\text{sec} \). The desired FOV (both x and y) is 10 cm and the desired resolution (both x and y) is 2.5 cm. Draw the gradient waveforms required to achieve the k-space trajectory. Label the waveform with the gradient amplitudes required to achieve the desired FOV and resolution. Also, make sure to label the time axis correctly.

![Diagram of k-space trajectory and gradient waveforms](image)
Gibbs Artifact

256x256 image

256x128 image

Images from http://www.mritutor.org/mritutor/gibbs.htm

Apodization

\[h(k_x) = \frac{1}{2}(1 + \cos(2\pi k_x)) \]

\[= 0.5\text{sinc}(x) + 0.25\text{sinc}(x-1) + 0.25\text{sinc}(x+1) \]

Aliasing and Bandwidth

Temporal filtering in the readout direction limits the readout FOV. So there should never bealiasing in the readout direction.

Aliasing and Bandwidth

Lowpass filter in the readout direction to prevent aliasing.