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Relaxation	



An excitation pulse rotates the magnetization vector away from 	


its equilibrium state (purely longitudinal). The resulting vector 	


has both longitudinal Mz  and tranverse Mxy  components.	


	


Due to thermal interactions, the magnetization will return to its 	


equilibrium state with characteristic time constants. 	



T1  spin-lattice time constant, return to equilibrium of Mz	


      	


T2  spin-spin time constant, return to equilibrium of Mxy 	
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Longitudinal Relaxation	



! 

dMz

dt
= "

Mz "M0

T1

Due to exchange of energy between nuclei and the lattice (thermal	


vibrations).  Process continues until thermal equilibrium as 	


determined by Boltzmann statistics is obtained. 	


	


The energy ΔE required for transitions between down to up spins, 	


increases with field strength, so that T1 increases with B. 	



! 

Mz(t) = M0(1" e
" t /T1 )After a 90 degree pulse	
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T1 Values	



Gray Matter	

 muscle	



White matter	



kidney	



liver	


fat	



Image, caption: Nishimura, Fig. 4.2 
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Transverse Relaxation	



! 

dMxy

dt
= "

Mxy

T2

Each spin’s local field is affected by the z-component of the field	


due to other spins. Thus, the Larmor frequency of each spin will be	


slightly different. This leads to a dephasing of the transverse 	


magnetization, which is characterized by an exponential decay.	


	


T2 is largely independent of field. T2 is short for low frequency 	


fluctuations, such as those associated with slowly tumbling	


macromolecules. 	
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T2 Relaxation	



! 

Mxy (t) = M0e
"t /T2After a 90 degree 

excitation	
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T2 Relaxation	
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Runners	



Net signal	



Credit: Larry Frank	
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T2 Values	



Table: adapted from Nishimura, Table 4.2 

Tissue T2 (ms) 
gray matter 100 

white matter 92 
muscle 47 
fat 85 

kidney 58 
liver 43 

Solids exhibit very 
short T2 relaxation 
times because there are 
many low frequency 
interactions between 
the immobile spins. 	


	


On the other hand, 
liquids show relatively 
long T2 values, because 
the spins are highly 
mobile and net fields 
average out. 	



CSF                    4000	
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Example	



T1-weighted! T2-weighted!Density-weighted!

Questions:  How can one achieve T2 weighting?  What are the 
relative T2’s of the various tissues? 	
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Example	



Hanson 2009	
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Bloch Equation	



! 

dM
dt

=M " #B$
Mxi + My j

T2
$
Mz $M0( )k

T1

i, j, k are unit vectors in the x,y,z directions. 	



Precession	


	

 Transverse	



Relaxation	


Longitudinal	


Relaxation	
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! 

dM
dt

=M " #B

= #

ˆ i ˆ j ˆ k 
Mx My Mz

Bx By Bz

= #

ˆ i Bz My $ By Mz( )
$ ˆ j Bz Mx $ Bx Mz( )
ˆ k By Mx $ Bx My( )

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

Free precession about static field	



B	



Μ	


dΜ	
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! 

dMx dt
dMy dt
dMz dt

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

= (

BzMy ) ByMz

BxMz ) BzMx

ByMx ) BxMy

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

= (

0 Bz )By

)Bz 0 Bx

By )Bx 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

Mx

My

Mz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

Free precession about static field	
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Precession 	



! 

dMx dt
dMy dt
dMz dt

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

= (

0 B0 0
)B0 0 0
0 0 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

Mx

My

Mz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

! 

M " Mx + jMy

! 

dM dt = d dt Mx + iMy( )
= " j#B0M

Useful to define	



Mx	



jMy	



! 

M(t) = M(0)e" j#B0t = M(0)e" j$0t
Solution is a time-varying phasor 	



Question: which way does this rotate with time?	
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Matrix Form with B=B0 	



! 

dMx dt
dMy dt
dMz dt

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

=

(1/T2 )B0 0
()B0 1/T2 0
0 0 (1/T1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

Mx

My

Mz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

+

0
0

M0 /T1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
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Z-component solution	



! 

Mz(t) = M0 + (Mz(0) "M0)e
" t /T1

! 

If Mz (0) = 0 then Mz (t) = M0(1" e"t /T1 )

Saturation Recovery	



Inversion Recovery	



! 

If Mz (0) = "M0 then Mz (t) = M0(1" 2e" t /T1 )
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Transverse Component	



! 

M " Mx + jMy

! 

dM dt = d dt Mx + iMy( )
= " j #0 +1/T2( )M

! 

M(t) = M(0)e" j#0te" t /T2
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Summary	


1)  Longitudinal component recovers exponentially.	



2)  Transverse component precesses and decays exponentially.	



Source: http://mrsrl.stanford.edu/~brian/mri-movies/ 	
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Summary	


1)  Longitudinal component recovers exponentially.	



2)  Transverse component precesses and decays exponentially.	



Fact: Can show that T2< T1 in order for |M(t)| ≤ M0  
Physically, the mechanisms that give rise to T1 relaxation 
also contribute to transverse T2 relaxation. 	
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Gradients	


Spins precess at the Larmor frequency, which is 
proportional to the local magnetic field. In a constant 
magnetic field Bz=B0, all the spins precess at the same 
frequency (ignoring chemical shift). 	



	



Gradient coils are used to add a spatial variation to Bz 
such that Bz(x,y,z) = B0+Δ Bz(x,y,z) . Thus, spins at 
different physical locations will precess at different 
frequencies. 	
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Simplified Drawing of Basic Instrumentation.   
Body lies on table encompassed by  

 coils for static field Bo,  
       gradient fields (two of three shown),  
       and radiofrequency field B1.  

MRI System	



Image, caption: copyright Nishimura, Fig. 3.15 
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Imaging: localizing the NMR signal	



Resonant Frequency: 	


	



ν(x) = γB0+γΔB(x) 	


	

	



RF and Gradient Coils!

The local precession frequency 
can be changed in a position-
dependent  way by applying linear 
field gradients	



ΔB(x)!

x!

Credit: R. Buxton	
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Gradient Fields	



! 

Bz(x,y,z) = B0 +
"Bz

"x
x +

"Bz

"y
y +

"Bz

"z
z

= B0 +Gxx +Gyy +Gzzz	



! 

Gz =
"Bz

"z
> 0

! 

Gy =
"Bz

"y
> 0

y
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Interpretation	



∆Bz(x)=Gxx	



Spins Precess at	


at γB0+ γGxx	


(faster)	


	


	



Spins Precess 	


at γB0- γGxx	


(slower)	


	



x	



Spins Precess at γB0	
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Rotating Frame of Reference	


Reference everything to the magnetic field at isocenter. 	
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Spins	



There is nothing that nuclear spins 
will not do for you, as long as you 
treat them as human beings.  	


Erwin Hahn	
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Phasors	



! 

" = 0

! 

" = #$ /2

! 

" = #

! 

" = # /2
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Phasor Diagram	



Real	



Imaginary	



! 

" = #2$kx x! 

G(kx ) = g(x)exp " j2#kxx( )
"$

$

% dx

! 

" = #2$kx x

! 

" = 0

! 

kx =1; x = 0
2"kxx = 0

! 

" = #$ /2

! 

x =1/4
2"kxx = " /2

! 

" = #

! 

x =1/2
2"kxx = "

! 

" = # /2

! 

x = 3/2
2"kxx = 3" /4
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Interpretation	



∆x	

 2∆x	

-∆x	

-2∆x	

 0	



∆Bz(x)=Gxx	



! 

exp " j2# 1
8$x
% 

& 
' 

( 

) 
* x

% 

& 
' 

( 

) 
* 

! 

exp " j2# 2
8$x
% 

& 
' 

( 

) 
* x

% 

& 
' 

( 

) 
* 

! 

exp " j2# 0
8$x
% 

& 
' 

( 

) 
* x

% 

& 
' 

( 

) 
* 

Faster	

Slower	
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Fig 3.12 from Nishimura	



kx=0; ky=0	

 kx=0; ky≠0	
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Hanson 2009	
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 Hanson 2009	
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Hanson 
2009	
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Phase with time-varying gradient	
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K-space trajectory	


Gx(t)	



t	


t1	

 t2	



ky	



! 

kx (t1)

! 

kx (t2)

Gy(t)	



t3	

 t4	


kx	



! 

ky (t4 )

! 

ky (t3)
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 Nishimura 1996	
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K-space trajectory	


Gx(t)	



t	


t1	

 t2	



ky	



Gy(t)	



kx	
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Spin-Warp	


Gx(t)	



t1	



ky	



Gy(t)	



kx	
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k-space	


Image space	

 k-space	



x	



y	



kx	



ky	



Fourier Transform	
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k-space	



kx	



ky	



TT Liu, BE280A, UCSD Fall 2010	



Spin-Warp Pulse Sequence	



Gx(t)	



Gy(t)	



RF	



ky	

Gy(t)	
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Spin-Warp	


Gx(t)	



t1	

 ky	



Gy(t)	



kx	
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Gradient Fields	



  

! 

Gx x + Gy y + Gzz =
! 
G "
! 
r 

  

! 

! 
G "Gx

ˆ i + Gy
ˆ j + Gz

ˆ k 

  

! 

Bz(
! r ,t) = B0 +

! 
G (t) " ! r 

Define 	



  

! 

! 
r " xˆ i + yˆ j + z ˆ k 

So that 	



Also, let the gradient fields be a function of time. Then 
the z-directed magnetic field at each point in the 
volume is given by :  	
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Static Gradient Fields	



! 

M(t) = M(0)e" j#0te" t /T2

In a uniform magnetic field, the transverse magnetization 
is given by: 	



In the presence of non time-varying gradients we have 	



  

! 

M (
! 
r ) = M (

! 
r ,0)e" j#Bz (

! 
r )te" t /T2 (

! 
r )

= M (
! 
r ,0)e" j# (B0+

! 
G $
! 
r )te" t /T2 (

! 
r )

= M (
! 
r ,0)e" j%0te" j#

! 
G $
! 
r te" t /T2 (

! 
r )
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Time-Varying Gradient Fields	


In the presence of time-varying gradients the frequency 
as a function of space and time is: 	



  

! 

"
! r ,t( ) = #Bz(

! r ,t)

= #B0 + #
! 
G (t) $ ! r 

="0 + %"(! r ,t)
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Phase	


Phase = angle of the magnetization phasor	


Frequency = rate of change of angle (e.g. radians/sec)	


Phase = time integral of frequency	



  

! 

"#
! 
r ,t( ) = $ "%(

! 
r ,& )

0

t

' d&

= $ (
" 

G (
! 
r ,& ) )

! 
r 

0

t

' d&

  

! 

"
! r ,t( ) = # $(! r ,% )

0

t
& d%

= #$0t + '"
! r ,t( )

Where the incremental phase due to the gradients is	
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Phase with constant gradient	



  

! 

"#
! r ,t3( ) = $ "%(! r ,& )

0

t3' d&

  

! 

"#
! r ,t2( ) = $ "%(

! r ,& )
0

t2' d&

= $"%(
! r )t2  

if "% is non - time varying.

  

! 

"#
! r ,t1( ) = $ "%(! r ,& )

0

t1' d&
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Time-Varying Gradient Fields	


The transverse magnetization is then given by 	



  

! 

M(
! 
r ,t) = M(

! 
r ,0)e" t /T2 (

! 
r )e# (

! 
r ,t )

= M(
! 
r ,0)e" t /T2 (

! 
r )e" j$0t exp " j %$

! 
r ,t( )d&

o

t
'( )

= M(
! 
r ,0)e" t /T2 (

! 
r )e" j$0t exp " j(

! 
G (&) )

! 
r d&

o

t
'( )
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Signal Equation	


Signal from a volume	



  

! 

sr(t) = M(
! 
r ,t)

V" dV

= M(x,y,z,0)e# t /T2 (
! 
r )e# j$0t exp # j%

! 
G (&) '

! 
r d&

o

t
"( )z"y"x" dxdydz

For now, consider signal from a slice along z and drop 
the T2 term. Define  	



  

! 

m(x,y) " M(! r ,t)
z0#$z / 2

z0 +$z / 2
% dz

  

! 

sr(t) = m(x,y)e" j#0t exp " j$
! 
G (%) &

! 
r d%

o

t
'( )y'x' dxdy

To obtain 	
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Signal Equation	


Demodulate the signal to obtain 	



  

! 

s(t) = e j" 0t sr(t)

= m(x,y)exp # j$
! 
G (% ) &

! 
r d%

o

t
'( )y'x' dxdy

= m(x,y)exp # j$ Gx (%)x + Gy (%)y[ ]d%
o

t
'( )y'x' dxdy

= m(x,y)exp # j2( kx (t)x + ky (t)y( )( )y'x' dxdy

! 

kx (t) =
"
2#

Gx ($ )d$0

t
%

ky (t) =
"
2#

Gy ($ )d$0

t
%

Where	
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MR signal is Fourier Transform	



! 

s(t) = m(x,y)exp " j2# kx (t)x + ky (t)y( )( )y$x$ dxdy

= M kx (t),ky (t)( )
= F m(x,y)[ ] kx (t ),ky (t )
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Recap	


•  Frequency = rate of change of phase.	


•  Higher magnetic field -> higher Larmor frequency -> 

phase changes more rapidly with time.	


•  With a constant gradient Gx,  spins at different x locations 

precess at different frequencies -> spins at greater x-values 
change phase more rapidly.	



•  With a constant gradient, distribution of phases across x 
locations changes with time. (phase modulation)	



•  More rapid change of phase with x -> higher spatial 
frequency kx	
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K-space	



! 

s(t) = M kx (t),ky (t)( ) = F m(x,y)[ ] kx ( t ),ky ( t )

! 

kx (t) =
"
2#

Gx ($ )d$0

t
%

ky (t) =
"
2#

Gy ($ )d$0

t
%

At each point in time, the received signal is the Fourier 
transform of the object	



evaluated at the spatial frequencies:	



Thus, the gradients control our position in k-space. The 
design of an MRI pulse sequence requires us to 
efficiently cover enough of k-space to form our image.	
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K-space trajectory	


Gx(t)	



t	



! 

kx (t) =
"
2#

Gx ($ )d$0

t
%

t1	

 t2	



kx	



ky	



! 

kx (t1)

! 

kx (t2)
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Units	


Spatial frequencies (kx, ky) have units of 1/distance.  
Most commonly, 1/cm	


	


Gradient strengths have units of (magnetic field)/
distance. Most commonly G/cm or mT/m	


	


γ/(2π) has units of  Hz/G or Hz/Tesla. 	


	


	



! 

kx (t) =
"
2#

Gx ($ )d$0

t

%

= [Hz /Gauss][Gauss /cm][sec]
= [1/cm]
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Example	


Gx(t) = 1 Gauss/cm	



t	



! 

kx (t2) =
"

2#
Gx ($ )d$

0

t

%
= 4257Hz /G &1G /cm &0.235'10(3 s
=1 cm(1

kx	



ky	



! 

kx (t1)

! 

kx (t2)

t2 =  0.235ms	



1 cm	




