

Relaxation

An excitation pulse rotates the magnetization vector away from its equilibrium state (purely longitudinal). The resulting vector has both longitudinal \mathbf{M}_{z} and tranverse \mathbf{M}_{xy} components.

Due to thermal interactions, the magnetization will return to its equilibrium state with characteristic time constants.

- T_1 spin-lattice time constant, return to equilibrium of M_z
- T_2 spin-spin time constant, return to equilibrium of M_{xy}

	T2 V	alues
Tissue	T ₂ (ms)	Solids exhibit very short T_2 relaxation times because there are many low frequency interactions between the immobile spins.
gray matter	100	
white matter	92	
muscle	47	
fat	85	
kidney	58	On the other hand, liquids show relatively long T_2 values, because the spins are highly
liver	43	
CSF	4000	
ble: adapted from Nishimura, Table 4.2		mobile and net fields average out.
, BE280A, UCSD Fall 2010		

Free precession about static field

$$\begin{bmatrix}
dM_x/dt \\
dM_y/dt \\
dM_z/dt
\end{bmatrix} = \gamma \begin{bmatrix}
B_z M_y - B_y M_z \\
B_x M_z - B_z M_x \\
B_y M_x - B_x M_y
\end{bmatrix}$$

$$= \gamma \begin{bmatrix}
0 & B_z & -B_y \\
-B_z & 0 & B_x \\
B_y & -B_x & 0
\end{bmatrix} \begin{bmatrix}
M_x \\
M_y \\
M_z
\end{bmatrix}$$
TLus BE200, UCSD Fall 2010

Precession
$$\begin{bmatrix} dM_x/dt \\ dM_y/dt \\ dM_z/dt \end{bmatrix} = \gamma \begin{bmatrix} 0 & B_0 & 0 \\ -B_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix}$$
Useful to define $M = M_x + jM_y$ $M/dt = d/dt(M_x + iM_y)$ $M/dt = M/dt = M/dt$

 $\begin{aligned} \text{Matrix Form with } \mathbf{B} = \mathbf{B}_{0} \\ \begin{bmatrix} dM_{x}/dt \\ dM_{y}/dt \\ dM_{z}/dt \end{bmatrix} = \begin{bmatrix} -1/T_{2} & \gamma B_{0} & 0 \\ -\gamma B_{0} & 1/T_{2} & 0 \\ 0 & 0 & -1/T_{1} \end{bmatrix} \begin{bmatrix} M_{x} \\ M_{y} \\ M_{z} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ M_{0}/T_{1} \end{bmatrix} \end{aligned}$

Z-component solution $M_z(t) = M_0 + (M_z(0) - M_0)e^{-t/T_1}$ Saturation Recovery If $M_z(0) = 0$ then $M_z(t) = M_0(1 - e^{-t/T_1})$ Inversion Recovery If $M_z(0) = -M_0$ then $M_z(t) = M_0(1 - 2e^{-t/T_1})$

Gradients

Spins precess at the Larmor frequency, which is proportional to the local magnetic field. In a constant magnetic field $B_z=B_0$, all the spins precess at the same frequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to B_z such that $B_z(x,y,z) = B_0 + \Delta B_z(x,y,z)$. Thus, spins at different physical locations will precess at different frequencies.

1111

12-----

11-

111

-11

11

--/1

TT Liu, BE280A, UCSD Fall 2010

12--11

112-11

1 1

-11

Hanson 2009

Gradiant Fields			
Ofacient Fields			
Define			
$\vec{G} = G_x \hat{i} + G_y \hat{j} + G_z \hat{k} \qquad \vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$			
So that			
$G_x x + G_y y + G_z z = \vec{G} \cdot \vec{r}$			
Also, let the gradient fields be a function of time. Then			
volume is given by :			
$B_z(\vec{r},t) = B_0 + \vec{G}(t) \cdot \vec{r}$			

Phase

Phase = angle of the magnetization phasor Frequency = rate of change of angle (e.g. radians/sec) Phase = time integral of frequency

$$\varphi(\vec{r},t) = -\int_0^t \omega(\vec{r},\tau) d\tau$$
$$= -\omega_0 t + \Delta \varphi(\vec{r},t)$$

Where the incremental phase due to the gradients is

$$\Delta \varphi(\vec{r}, t) = -\int_0^t \Delta \omega(\vec{r}, \tau) d\tau$$
$$= -\int_0^t \gamma \vec{G}(\vec{r}, \tau) \cdot \vec{r} d\tau$$

Time-Varying Gradient Fields
The transverse magnetization is then given by

$$M(\vec{r},t) = M(\vec{r},0)e^{-t/T_{2}(\vec{r})}e^{\varphi(\vec{r},t)}$$

$$= M(\vec{r},0)e^{-t/T_{2}(\vec{r})}e^{-j\omega_{0}t}\exp\left(-j\int_{o}^{t}\Delta\omega(\vec{r},t)d\tau\right)$$

$$= M(\vec{r},0)e^{-t/T_{2}(\vec{r})}e^{-j\omega_{0}t}\exp\left(-j\gamma\int_{o}^{t}\vec{G}(\tau)\cdot\vec{r}d\tau\right)$$

TT Liu, BE280A, UCSD Fall 2010

Signal Equation Signal from a volume $s_r(t) = \int_V M(\vec{r}, t) dV$ $= \int_x \int_y \int_z M(x, y, z, 0) e^{-t/T_2(\vec{r})} e^{-j\omega_0 t} \exp\left(-j\gamma \int_o^t \vec{G}(\tau) \cdot \vec{r} d\tau\right) dx dy dz$ For now, consider signal from a slice along *z* and drop the T₂ term. Define $m(x, y) = \int_{z_0 - \Delta z/2}^{z_0 + \Delta z/2} M(\vec{r}, t) dz$ To obtain $s_r(t) = \int_x \int_y m(x, y) e^{-j\omega_0 t} \exp\left(-j\gamma \int_o^t \vec{G}(\tau) \cdot \vec{r} d\tau\right) dx dy$

TT Liu, BE280A, UCSD Fall 2010

TT Liu, BE280A, UCSD Fall 2010

Units

Spatial frequencies (k_x, k_y) have units of 1/distance. Most commonly, 1/cm

Gradient strengths have units of (magnetic field)/ distance. Most commonly G/cm or mT/m

 $\gamma/(2\pi)$ has units of Hz/G or Hz/Tesla.

$$k_x(t) = \frac{\gamma}{2\pi} \int_0^t G_x(\tau) d\tau$$

$$= [Hz/Gauss][Gauss/cm][sec]$$
$$= [1/cm]$$

