Bioengineering 280A
Principles of Biomedical Imaging

Fall Quarter 2010
 MRI Lecture 2

TT Liu, BE280A, UCSD Fall 2010

Relaxation

An excitation pulse rotates the magnetization vector away from its equilibrium state (purely longitudinal). The resulting vector has both longitudinal $\mathbf{M}_{\mathbf{z}}$ and tranverse $\mathbf{M}_{\mathbf{x y}}$ components.

Due to thermal interactions, the magnetization will return to its equilibrium state with characteristic time constants.
T_{1} spin-lattice time constant, return to equilibrium of $\mathbf{M}_{\mathbf{z}}$
T_{2} spin-spin time constant, return to equilibrium of $\mathbf{M}_{\mathbf{x y}}$

TT Liu, BE280A, UCSD Fall 2010

Longitudinal Relaxation

Due to exchange of energy between nuclei and the lattice (thermal vibrations). Process continues until thermal equilibrium as determined by Boltzmann statistics is obtained

The energy $\Delta \mathrm{E}$ required for transitions between down to up spins, increases with field strength, so that T_{1} increases with \mathbf{B}. TT Liu, BE280A, UCSD Fall 2010

T1 Values

Transverse Relaxation

$$
\frac{d \mathbf{M}_{x y}}{d t}=-\frac{M_{x y}}{T_{2}}
$$

Each spin's local field is affected by the z-component of the field due to other spins. Thus, the Larmor frequency of each spin will be slightly different. This leads to a dephasing of the transverse magnetization, which is characterized by an exponential decay.
T_{2} is largely independent of field. T_{2} is short for low frequency fluctuations, such as those associated with slowly tumbling macromolecules.

TT Liu, BE280A, UCSD Fall 2010

T2 Relaxation

Free Induction Decay (FID)

$\begin{aligned} & \text { After a } 90 \text { degree } \\ & \text { excitation }\end{aligned} \quad M_{x y}(t)=M_{0} e^{-t / T_{2}}$
excitation

TT Liu, BE280A, UCSD Fall 2010

T2 Values

Tissue	$\mathrm{T}_{2}(\mathrm{~ms})$
gray matter	100
white matter	92
muscle	47
fat	85
kidney	58
liver	43
CSF	4000

Solids exhibit very short T_{2} relaxation times because there are many low frequency interactions between the immobile spins.

On the other hand, liquids show relatively long T_{2} values, because the spins are highly mobile and net fields Table: adapted from Nishimura, Table 4.2 average out.

Questions: How can one achieve T2 weighting? What are the relative T2' s of the various tissues?

TT Liu, BE280A, UCSD Fall 2010

Bloch Equation

$$
\frac{d \mathbf{M}}{d t}=\underbrace{\mathbf{M} \times \gamma \mathbf{B}}_{\text {Precession }}-\underbrace{\frac{M_{x} \mathbf{i}+M_{y} \mathbf{j}}{T_{2}}}_{\begin{array}{c}
\text { Transerse } \\
\text { Relaxation }
\end{array}}-\frac{\left(M_{z}-M_{0}\right) \mathbf{k}}{\underbrace{T_{1}}_{\begin{array}{c}
\text { Lonitudinal } \\
\text { Relaxation }
\end{array}}}
$$

$\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions.

Example

 (a) Four images, all obtained with a common TR=5 seconds and TE=90, 50, 20, 15 ms (shown in reading order).

 (b) Six images obtained with a common $\mathrm{TE}=15 \mathrm{~m}$ and TR=500, 1000, 2000, 3000, 4000, 5000 ms (shown in reading order).

Figure 8: Phantom data which illustrates signal intensity and contrast for bottles filled with jello af varying consistency. Where is T_{1} long/short? How long, how short? The same for T_{2} ? Which bottles might be pure water? Which jello is most firm? What pictures are the most T_{1}, T_{2}-and PD-weighted?

TT Liu, BE280A, UCSD Fall 2010
Hanson 2009

Free precession about static field

TTiu, BE280A, UCSD Fall 20

Free precession about static field

$$
\begin{aligned}
{\left[\begin{array}{l}
d M_{x} / d t \\
d M_{y} / d t \\
d M_{z} / d t
\end{array}\right] } & =\gamma\left[\begin{array}{l}
B_{z} M_{y}-B_{y} M_{z} \\
B_{x} M_{z}-B_{z} M_{x} \\
B_{y} M_{x}-B_{x} M_{y}
\end{array}\right] \\
& =\gamma\left[\begin{array}{ccc}
0 & B_{z} & -B_{y} \\
-B_{z} & 0 & B_{x} \\
B_{y} & -B_{x} & 0
\end{array}\right]\left[\begin{array}{l}
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right]
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2010

Precession

$$
\left[\begin{array}{l}
d M_{x} / d t \\
d M_{y} / d t \\
d M_{z} / d t
\end{array}\right]=\gamma\left[\begin{array}{ccc}
0 & B_{0} & 0 \\
-B_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right]
$$

Useful to define $M \equiv M_{x}+j M_{y}$

$$
d M / d t=d / d t\left(M_{x}+i M_{y}\right)
$$

$$
=-j \gamma B_{0} M
$$

Solution is a time-varying phasor

$$
M(t)=M(0) e^{-j \gamma B_{0} t}=M(0) e^{-j \omega_{0} t}
$$

TT Liu, BE280A, UCSD Fall 2010
Question: which way does this rotate with time?

Z-component solution

$$
M_{z}(t)=M_{0}+\left(M_{z}(0)-M_{0}\right) e^{-t / T_{1}}
$$

Saturation Recovery

$$
\text { If } M_{z}(0)=0 \text { then } M_{z}(t)=M_{0}\left(1-e^{-t / T_{1}}\right)
$$

Inversion Recovery
If $M_{z}(0)=-M_{0}$ then $M_{z}(t)=M_{0}\left(1-2 e^{-t / T_{1}}\right)$

TT Liu, BE280A, UCSD Fall 201

Transverse Component
 $M \equiv M_{x}+j M_{y}$

$\begin{aligned} d M / d t & =d / d t\left(M_{x}+i M_{y}\right) \\ & =-j\left(\omega_{0}+1 / T_{2}\right) M\end{aligned}$
$M(t)=M(0) e^{-j \omega_{0} t} e^{-t / T_{2}}$

TT Liu, BE280A, UCSD Fall 2010

Summary

1) Longitudinal component recovers exponentially.
2) Transverse component precesses and decays exponentially.

Fact: Can show that $\mathrm{T}_{2}<\mathrm{T}_{1}$ in order for $|\mathrm{M}(\mathrm{t})| \leq \mathrm{M}_{0}$ Physically, the mechanisms that give rise to T_{1} relaxation also contribute to transverse T_{2} relaxation. Tт Liu, BE280, UCSD Fall 2010

Summary

1) Longitudinal component recovers exponentially.
2) Transverse component precesses and decays exponentially.

Source: http://mrsrl.stanford.edu/~brian/mri-movies/
tT Liu, BE280A, UCSD Fall 2010

Gradients

Spins precess at the Larmor frequency, which is proportional to the local magnetic field. In a constant magnetic field $\mathrm{B}_{2}=\mathrm{B}_{0}$, all the spins precess at the same frequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to B_{z} such that $\mathrm{B}_{z}(x, y, z)=\mathrm{B}_{0}+\Delta \mathrm{B}_{\mathrm{z}}(x, y, z)$. Thus, spins at different physical locations will precess at different frequencies.

TT Liu, BE280A, UCSD Fall 2010

$\left.\begin{array}{l}\text { Imaging: localizing the NMR signal } \\ \text { The local precession frequency } \\ \text { can be changed in a position- } \\ \text { dependent way by applying linear } \\ \text { field gradients }\end{array}\right\}$

Gradient Fields

z

$$
\begin{aligned}
B_{z}(x, y, z) & =B_{0}+\frac{\partial B_{z}}{\partial x} x+\frac{\partial B_{z}}{\partial y} y+\frac{\partial B_{z}}{\partial z} z \\
& =B_{0}+G_{x} x+G_{y} y+G_{z} z
\end{aligned}
$$

$$
\longleftrightarrow_{\mathrm{y}}
$$

$\uparrow \uparrow \uparrow$
\dagger
\dagger
\dagger
$\dagger$$\uparrow$

$$
G_{z}=\frac{\partial B_{z}}{\partial z}>0
$$

Imaging: localizing the NMR signal can be changed in a positiondependent way by applying linear field gradients

Resonant Frequency: $v(x)=\gamma B_{0}+\gamma \Delta B(x)$

Credit: R. Buxton

$$
G_{y}=\frac{\partial B_{z}}{\partial y}>0
$$

TT Liu, BE280A, UCSD Fall 2010

Gradient Fields

Define

$$
\vec{G} \equiv G_{x} \hat{i}+G_{y} \hat{j}+G_{z} \hat{k} \quad \vec{r} \equiv x \hat{i}+y \hat{j}+z \hat{k}
$$

So that

$$
G_{x} x+G_{y} y+G_{z} z=\vec{G} \cdot \vec{r}
$$

Also, let the gradient fields be a function of time. Then the z -directed magnetic field at each point in the volume is given by :

$$
B_{z}(\vec{r}, t)=B_{0}+\vec{G}(t) \cdot \vec{r}
$$

TT Liu, BE280A, UCSD Fall 2010

Static Gradient Fields

In a uniform magnetic field, the transverse magnetization is given by:

$$
M(t)=M(0) e^{-j \omega_{0} t} e^{-t / T_{2}}
$$

In the presence of non time-varying gradients we have

$$
\begin{aligned}
M(\vec{r}) & =M(\vec{r}, 0) e^{-j \gamma B_{i}(\vec{r}) t} e^{-t / T_{2}(\vec{r})} \\
& =M(\vec{r}, 0) e^{-j \gamma\left(B_{0}+\vec{r} \cdot \vec{r}\right) t} e^{-t / T_{2}(\vec{r})} \\
& =M(\vec{r}, 0) e^{-j \omega_{0} t} e^{-j \gamma \vec{G} \cdot \vec{r} t} e^{-t / T_{2}(\vec{r})}
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2010

Time-Varying Gradient Fields

In the presence of time-varying gradients the frequency as a function of space and time is:

$$
\begin{aligned}
\omega(\vec{r}, t) & =\gamma B_{z}(\vec{r}, t) \\
& =\gamma B_{0}+\gamma \vec{G}(t) \cdot \vec{r} \\
& =\omega_{0}+\Delta \omega(\vec{r}, t)
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2010

Phase

Phase $=$ angle of the magnetization phasor
Frequency $=$ rate of change of angle (e.g. radians/sec) Phase $=$ time integral of frequency

$$
\begin{aligned}
\varphi(\vec{r}, t) & =-\int_{0}^{t} \omega(\vec{r}, \tau) d \tau \\
& =-\omega_{0} t+\Delta \varphi(\vec{r}, t)
\end{aligned}
$$

Where the incremental phase due to the gradients is

$$
\begin{aligned}
\Delta \varphi(\vec{r}, t) & =-\int_{0}^{t} \Delta \omega(\vec{r}, \tau) d \tau \\
& =-\int_{0}^{t} \gamma \vec{G}(\vec{r}, \tau) \cdot \vec{r} d \tau
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2010

Phase with constant gradient

Time-Varying Gradient Fields

The transverse magnetization is then given by

$$
\begin{aligned}
M(\vec{r}, t) & =M(\vec{r}, 0) e^{-t / T_{2}(\vec{r})} e^{\varphi(\vec{r}, t)} \\
& =M(\vec{r}, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \int_{o}^{t} \Delta \omega(\vec{r}, t) d \tau\right) \\
& =M(\vec{r}, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right)
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2010

Signal Equation

Demodulate the signal to obtain

$$
\begin{aligned}
s(t) & =e^{j \omega_{0} t} s_{r}(t) \\
& =\int_{x} \int_{y} m(x, y) \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y \\
& =\int_{x} \int_{y} m(x, y) \exp \left(-j \gamma \int_{o}^{t}\left[G_{x}(\tau) x+G_{y}(\tau) y\right] d \tau\right) d x d y \\
& =\int_{x} \int_{y} m(x, y) \exp \left(-j 2 \pi\left(k_{x}(t) x+k_{y}(t) y\right)\right) d x d y
\end{aligned}
$$

Where

$$
\begin{aligned}
& k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau \\
& k_{y}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{y}(\tau) d \tau
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2010

Signal Equation
 Signal from a volume
 $s_{r}(t)=\int_{V} M(\vec{r}, t) d V$
 $=\int_{x} \int_{y} \int_{z} M(x, y, z, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y d z$

For now, consider signal from a slice along z and drop the T_{2} term. Define $m(x, y) \equiv \int_{z_{0}-\Delta z / 2}^{z_{0}+\Delta z / 2} M(\vec{r}, t) d z$

To obtain

$$
s_{r}(t)=\int_{x} \int_{y} m(x, y) e^{-j \omega_{0} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y
$$

TT Liu, BE280A, UCSD Fall 2010

MR signal is Fourier Transform

$s(t)=\int_{x} \int_{y} m(x, y) \exp \left(-j 2 \pi\left(k_{x}(t) x+k_{y}(t) y\right)\right) d x d y$
$=M\left(k_{x}(t), k_{y}(t)\right)$
$=F[m(x, y)]_{k_{x}(t), k_{y}(t)}$

TT Liu, BE280A, UCSD Fall 2010

Recap

- Frequency $=$ rate of change of phase.
- Higher magnetic field -> higher Larmor frequency -> phase changes more rapidly with time.
- With a constant gradient G_{x}, spins at different x locations precess at different frequencies -> spins at greater x -values change phase more rapidly.
- With a constant gradient, distribution of phases across x locations changes with time. (phase modulation)
- More rapid change of phase with $x->$ higher spatial frequency k_{x}

TT Liu, BE280A, UCSD Fall 2010

K-space

At each point in time, the received signal is the Fourier transform of the object

$$
s(t)=M\left(k_{x}(t), k_{y}(t)\right)=F[m(x, y)]_{k_{x}(t), k_{y}(t)}
$$

evaluated at the spatial frequencies:

$$
\begin{aligned}
& k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau \\
& k_{y}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{y}(\tau) d \tau
\end{aligned}
$$

Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k-space to form our image

TT Liu, BE280A, UCSD Fall 2010

K-space trajectory

$k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau$

TT Liu, BE280A, UCSD Fall 2010

Units

Spatial frequencies $\left(k_{x}, k_{y}\right)$ have units of $1 /$ distance. Most commonly, $1 / \mathrm{cm}$

Gradient strengths have units of (magnetic field)/ distance. Most commonly G / cm or mT / m
$\gamma /(2 \pi)$ has units of Hz / G or $\mathrm{Hz} /$ Tesla.

$$
k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau
$$

$$
=[\mathrm{Hz} / \text { Gauss }][\text { Gauss } / \mathrm{cm}][\mathrm{sec}]
$$

$$
=[1 / \mathrm{cm}]
$$

TT Liu, BE280A, UCSD Fall 2010

