

leurophysiological Correlates of Cognitive-state Chan						
Study	Task(s); Measure(s)	Electrode Sites or Brain Regions	8	θ	α	β
Badia et al. (1994)	Sleep onset	F3, C3, O1		+	+/-	
Baulk et al. (2001)	Simulated driving task in an immobile car, secondary auditory detection task; lane crossing incidents, RT, Karolinska Sleepiness Scale (KSS)	C3-A1		+	+	
Beatty et al. (1974)	Radar monitoring task; target detection time	O1-P3		+		
Belyavin and Wright (1987)	Visual vigilance and letter discrimination tasks; RT, error/missing rate	P3-O1, P4-Oz	+	+	+	-
Campagne et al. (2004)	Simulated driving on mobile platforms; running-off-	F3, C3, P3, O1 (C3, P3 shown)		+	+	
Cante Many st Eoh et al. (2005) Gillberg et al. (1990 Ctu	udies her variations demons Simulated driving fask (static); number of accidents lations sin, tasks perfo	trated EEG cc Fp1, Fp2, T3, T4, P3, P4, 01, 02 Crmance durir	orre ng	lạt	es *	-
.	S.D. of lane position, KSS, RT		-	_		
Harris Sen Strappe Hasan and Broughton (1994)	Sleep onset, MSLT		one	<u></u> +	*	
Horne Second	to several minutes.	Chen, Huang	, et	: al	+	
Huang et al. (2001)	Auditory and visual vigilance tasks; correct rate	C3, C4	· .	- <u>+</u>	\frown^+	
Huanfrecently	conducted a meta	analysistoret	ne l	=E(G+	
Huang et al. (2009) Spectral Jung et al. (1997)	Erent-related lane denarture during simulated driving Chaldrages accompany Auditory oddrall task; error rate	256 EPG channels: occipital and Mictil http://occupital.com/	s in	ţa	sk	*
Keckip erform	a Real ruge driving; KSS, self-rated performance	Cz-Oz		+	+	
Lal and Craig (2002, 2005)	Simulated driving in a static car frame; facial features (from video) of the driver	19 EEG channels	+	+		
Lowden et al. (2009)	Simulated driving on a moving base; speed, lateral position, steering wheel angle, KSS	Fz-A1, Cz-A2, Oz-Pz			+	+
Makeig and Inlow (1993)	Auditory oddball task; local error rate	13 EEG channels	+	+	-	
Makeig and Jung (1995, 1996)	 Auditory oddball task, visual target detection; local error rate 	Cz, Pz/Oz	+	+	-	*
Makeig et al. (2000)	Compensatory tracking task; tracking error	F3, C4, P4, O1 (C4 shown)	+	+		
Ogilvie and Wilkinson (1984)	Auditory response task; reaction time	Cz, Pz				
Ogilvie et al. (1991)	Auditory response task; reaction time	14 EEG channels (C3, C4 shown)	+	+	-	-
0 1 (100.0)	Auditory response task: reaction time	18 EEG channels (F1, F2, O1, O2		+	+/-	
Ota et al. (1996)	radiory response ask, reaction time	shown)				

				Tre	nds			
-		Moti	onless			Mc	otion	
Cluster / Figure	δ	θ	α	β	δ	θ	α	f
Occipital (bilateral) / Fig. 3	**	/*	1	\sim	/ *	/*	\sim	1
Occipital (medial) / Fig. S6	1	1	\nearrow	\sim	1*	/*	**	1
Occipital (tangential) / Fig. S8	1*	/*	∕∖*	\wedge	1	1	\sim	1
Medial posterior parietal / Fig. 4	7*	/*	_		1 *	1	_	
Left somatomotor / Fig. 5	1	1	_	_	1	1	_	_
Right somatomotor / Fig. S10	1	1*	_	_	1	1	\searrow	1
Central medial / Fig. 6	7*	1*	**	1	* *	* *	1	1
Frontal medial / Fig. 7	1	1		_	1	7*	_	

From Chen et al., under review.

8. Chuang, et al., NeuroImage, 2012.

MINDO	- 2ch/4ch	Channels			
		EEG Headband			
Rindo	Features	Distributed Circuits			
2-7	Miniaturization Size (mm)	DAQ: 20 x 18 (4 pieces)			
		MCU: 40 x 25			
	Weight	< 100 g			
	Sampling Rate	512Hz			
	Bandwidth	Filter to 0.5 - 50 Hz			
	Gain	6000 times			
r G	Output current (working)	31.58 mA			
	Battery Life (3.7V, 1100mA)	33 hours			

Categorizations of Large-Scale Brain Connectivity Analysis

(Bullmore and Sporns, Nature, 2009)

Progress in BCIs We Expect to See in the Near Future

- **Direct Control**: to comprise the task the user performs (e.g. the movement of a prosthetic).
- **Indirect Control:** to use neural information associated with the human perception of "errors" to augment control systems.
- **Communications:** to enable patients with little to no communication capability to generate speech.
- **Brain-process modification**: to help individuals adjust their own brain function to attain a more desirable state.
- Neural State Detection: to detect fatigue, attentional, arousal, and affective levels, allowing systems or environments to adapt to the state of the user, increasing joint user-system performance.