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Types of BCIs 

•  Active BCI (BMI): a BCI derives its outputs from brain 
activity which is directly consciously controlled by the 
user, independently from external events, for controlling 
an application. 

•  Reactive BCI: a BCI derives its outputs fron brain 
activity arising in reaction to external stimulation, which 
is indirectly modulated by the users for controlling an 
application. 

•  Passive or Affective BCI (BMI) derives its 
outputs from spontaneous brain activity without the 
purpose of voluntary control. 
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•  Lapses of attention or drowsiness can lead to 
catastrophic incidents for workers in many 
occupations.  

•  The US National Highway Traffic Safety 
Administration (NHTSA) reported that ~25% of 
police-reported accidents were related to driver 
inattention.  

•  National Sleep Foundation (NSF) reported that 
60% of adult drivers had driven a vehicle while 
feeling drowsy and 37% had actually fallen asleep. 

Lapses of Attention and Drowsiness 

•  To investigate tonic and phasic spectral changes during 
continuous sustained-attention tasks in a realistic 
environment (car driving). 

•  To build a neuroergonomic system that can continuously 
monitor brain dynamics and cognitive states of participants 
actively performing ordinary tasks in natural body positions 
and situations within real operational environments. 

Objectives of this Study 

   Neurotechnology 

 

Neurophysiology 
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Neurophysiological Correlates of Cognitive-state Changes 
Study Task(s); Measure(s) Electrode Sites or Brain Regions δ θ α β 

Badia et al. (1994) Sleep onset F3, C3, O1 + +/- 
Baulk et al. (2001) Simulated driving task in an immobile car, secondary 

auditory detection task; lane crossing incidents, RT, 
Karolinska Sleepiness Scale (KSS) 

C3-A1 + + 

Beatty et al. (1974) Radar monitoring task; target detection time O1-P3 + 
Belyavin and Wright (1987) Visual vigilance and letter discrimination tasks; RT, 

error/missing rate 
P3-O1, P4-Oz + + + - 

Campagne et al. (2004) Simulated driving on mobile platforms; running-off-
road incidents, speed variations 

F3, C3, P3, O1 (C3, P3 shown) + + 

Cantero (1999) Sleep onset 19 EEG channels * 
Eoh et al. (2005) Simulated driving task (static); number of accidents 

and lap time per cycle 
Fp1, Fp2, T3, T4, P3, P4, O1, O2 + + - 

Gillberg et al. (1996) Simulated truck driving; mean speed, S.D. of speed, 
S.D. of lane position, KSS, RT 

C3-A2, O2-P4 * * 

Harrison and Horne (1996) Multiple sleep latency test (MSLT) (C3-A2) + * 
Hasan and Broughton (1994) Sleep onset; MSLT 19 EEG channels * * 
Horne and Baulk (2004) Simulated driving task in an immobile car; KSS, lane 

drifting 
(C3-A1) + + 

Huang et al. (2001) Auditory and visual vigilance tasks; correct rate C3, C4 + + 
Huang et al. (2008) Compensatory tracking task; tracking error, reaction 

time 
70 EEG channels; occipital independent 
components 

+ + + 

Huang et al. (2009)  Event-related lane departure during simulated driving 
(static); reaction time 

256 EEG channels; occipital and 
parietal independent components 

+ + + 

Jung et al. (1997) Auditory oddball task; error rate Cz, Pz/Oz + - * 
Kecklund and Åkerstedt (1993) Real truck driving; KSS, self-rated performance 

capacity 
Cz-Oz + + 

Lal and Craig (2002, 2005) Simulated driving in a static car frame; facial features 
(from video) of the driver 

19 EEG channels + + 

Lowden et al. (2009) Simulated driving on a moving base; speed, lateral 
position, steering wheel angle, KSS 

Fz-A1, Cz-A2, Oz-Pz + + 

Makeig and Inlow (1993) Auditory oddball task; local error rate 13 EEG channels + + - 
Makeig and Jung (1995, 1996) Auditory oddball task, visual target detection; local 

error rate 
Cz, Pz/Oz + + - * 

Makeig et al. (2000) Compensatory tracking task; tracking error F3, C4, P4, O1 (C4 shown) + + 
Ogilvie and Wilkinson (1984) Auditory response task; reaction time Cz, Pz 
Ogilvie et al. (1991) Auditory response task; reaction time 14 EEG channels (C3, C4 shown) + + - - 
Ota et al. (1996) Auditory response task; reaction time 18 EEG channels (F1, F2, O1, O2 

shown) 
+ +/- 

Otmani et al. (2005) Simulated driving on a mobile base; S.D. of lateral 
position, steering wheel angle, KSS 

F3, C3, P3, O1 + + 

Papadelis et al. (2007) Real driving; severe driving errors Fp1, Fp2, C3, C4, P3, P4, O1, O2 + + + - 
Papadelis et al. (2009) Real driving; driving duration Fp1, Fp2, C3, C4 + + + - 
Paus et al. (1997) Continuous performance test (auditory); target hits, 

reaction time 
19 EEG channels (F3, F4, T3, T4, O1, 
O2 shown) 

+ 

Peiris et al. (2006) Continuous tracking task; lapse in tracking 
performance, video rating 

16 EEG channels + + + - 

Ryu et al. (2007) Simulated driving (static); driving duration, subjective 
visual analog scale 

MEG; frontal/parietal areas + 

Schier (2000) Simulated driving (static); lap and driving duration P3, P4, F3, F4 + 
Schmidt et al. (2009) Real driving; secondary auditory oddball task, reaction 

time, subject measures 
128 EEG channels (Pz shown) + 

Torsvall and Åkerstedt (1987) Real train operation; responses to stop signals O2-P4 + + + 
Wijesuriya et al. (2007) Simulated driving (static), digit monitoring task; 

deviation, reaction time, facial symptoms 
12 EEG channels (delta activity at O2 
site) 

+ 

Many studies have demonstrated EEG correlates 
of fluctuations in task performance during 
sustained attention task on the order of one 
second to several minutes. Chen, Huang, et al. 
recently conducted a meta analysis on the EEG 
spectral changes accompany fluctuations in task 
performance. 

A VR-based Dynamic Driving Simulator 
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Cruising Speed: 100 km/hr   
Linear deviation (D=c T)  
Inter-Deviation-Interval: 5 ~ 10 sec         
Deviation: 50% leftward, 50% rightward deviation 

Paradigm: Single Trials Embedded in Continuous Driving 

From Huang et al., 2005, 2007. 
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From Huang et al., 2006. 
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From Huang et al., 2006. 
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14 

Before Clustering 

Mu Cluster 

Alpha Cluster 3010 (Hz) 

After Clustering 

Component Stability: Cross-subject 
clustering analysis of ICA components 

Deviation-induced Brain Dynamics 

Dipole Locations 

Tonic Spectral Dynamics 
Cluster Mean Map 

    Event-related Spectral Perturbation      

From Chen et al., under review. 
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From Chen et al., under review. 

Spectral Perturbations  
as a Function of RT 

From Chen et al., under review. 
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Correlation between Power Spectra and 
Driving Performance 

Subj. A Subj. D 

From Lin et al, EURASIP, 2005. 
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Sample Results 
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Effective & Ineffective Warning Signals 
•  Threshold: three times the mean alert RT 

Some of them had RTs Still Longer than three times the mean RT, 
defined as “ineffective feedback”; others had RTs shorter than two 
times the mean RT, defined as “effective feedback” 

1750 Hz burst tone  
(68.5 ±1.5 dB) 

Behavioral Improvements following 
Arousing Signals 

•  The RTs of trials following warning were significantly 
shorter (p<0.01) than those without warning (left panel). 

•  The RTs of effective trials were significantly shorter 
(p<0.001) than those of ineffective trials (right panel). 

Normalized RT = Recorded RT/mean alert RT
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Power Spectra Changes after a 
Warning Feedback	 

•  Effective trials (left panel): the spectral differences between current 
(solid line) and next trials (dashed line) were statistically significant 
(p<0.005) and most prominent in the theta and alpha bands with 
over 5 dB to 10 dB decreases after receiving arousing feedback.  

significant difference	 

Effective	 Ineffective	 

EEG Dynamics following Feedback 

From Jung et al, IEEE EMBC  2010. 
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Feedback Efficacy Assessment System 

From  Huang, Jung et al, IEEE EMBC  2012. 

Classification Accuracies obtained by 
different feature extractions and classifiers 

The accuracies of ML, KNN and SVM classifiers were over 70%. 	 
From  Huang, Jung et al, IEEE EMBC  2012. 
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A Closed-loop Drowsiness Monitoring & 
Management System 

Wang et al.,  IEEE BioCAS, 2012. 

•  To investigate tonic and phasic spectral changes during 
continuous sustained-attention tasks in a realistic 
environment (car driving). 

•  To build a neuroergonomic system that can 
continuously monitor brain dynamics and cognitive 
states of participants actively performing ordinary 
tasks in natural body positions and situations within 
real operational environments. 

Objectives of this Study 
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Clinical Neurophysiology 
Volume 118, Issue 9, September 2007 

Missing Link 

Missing Link: Mobile & Wireless EEG 

Laboratory EEG 

NCTU’s MW-EEG 

The current laboratory-oriented EEG systems do 
not allow assessment of brain activities of 
participants performing tasks involving natural 
movements. 
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MINDO --- 2ch/4ch Channels 

EEG Headband 

Features Distributed Circuits 

Miniaturization 
Size (mm) 

 

DAQ: 20 x 18            (4 pieces) 
 
MCU: 40 x 25 
 

Weight < 100 g 
Sampling Rate 512Hz 

Bandwidth Filter to 0.5 - 50 Hz 
 

Gain 6000 times 
Output current 

(working) 31.58 mA 

Battery Life 
(3.7V, 1100mA) 33 hours 

A Wearable and Wireless   
DMM System 
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Summary 
§  This study has reported both tonic and phasic spectral 

dynamics of independent components in response to lane-
deviations during a continuous lane-keeping driving task. 

§  Arousing auditory feedback delivered to the drowsy subjects 
immediately agitated subject’s responses to the events.  

§  The improved behavioral performance was accompanied by 
concurrent spectral suppression in the theta- and alpha-bands 
of bilateral occipital components. 

§  We also showed that continuous, accurate, noninvasive and 
near real-time estimation of subject’s cognitive level is feasible 
in a realistic operational environment. 

§  It is feasible to integrate novel dry sensors, advanced signal-
processing algorithms and miniature supporting hardware into 
a mobile & wireless cognitive-state monitoring and 
management system. 

 

	

	


Neuroscience and Neurotechnology 

World-wide neuroscience efforts  
•  19,821K neuroscience publications (www.scimagojr.com) 

•  31 (115) countries produced over 100K (1K) documents 
(www.scimagojr.com)  

•  Over 300 neuroscience journal titles 

•  Neurotech industry has a > $140 billion investment annually (NIO, 
2009). 

 

Problem: How to create the ability to leverage the vast world-
wide neuroscience efforts to further advance neuroscience 
research, and improve prevention, diagnosis, and treatment of 
neurological diseases and injuries? 
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1.  Lack of portable, user-acceptable, robust systems for 
monitoring brain and body dynamics in real-world 
environments. 

2.  Lack of mathematical modeling methods to find statistical 
relationships among the variations in environmental, 
behavioral, and functional brain dynamics. 

3.  Restrictive experimental control and impoverished 
paradigms and environments. 

 
 
 
 
 

Major Barriers/Challenges 
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1.  Un-mix cortical and artifact source contributions to the scalp 
electrodes using independent component analysis (ICA).  

2.  Visualize the activities of independent component (IC) 
sources across single trials using ERP-image plotting. 

3.  Model the event-related dynamics of the IC sources using 
time/frequency analysis. 

4.  Localize the separated IC sources using inverse source 
mapping methods.  

5.  Compare similarities in IC dynamics and locations across 
subjects using IC cluster analysis. 

6.  Examine the interaction between brain areas using 
component cross-coherence or effective connectivity. 

Modeling Event-Related Brain Dynamics 

5-Hz Brain Dynamics 

Makeig et al., PLoS Biology, 2004. 
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Copied from Mullen, T. EEGLAB SIFT Toolbox, 2010..  

From Mullen’s Tutorial of SIFT at EEGLAB Workshop in Beijing, China, 2012. 
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From Mullen’s Tutorial of SIFT at EEGLAB Workshop in Beijing, China, 2012. 

Copied from Mullen, T. EEGLAB SIFT Toolbox, 2010..  From Mullen’s Tutorial of SIFT at the 15th 
EEGLAB Workshop in Beijing, China. 2012. 
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Mobile wireless EEG + BCILAB/SIFT 

MWEEG (NCTU) and BCILAB/SIFT (UCSD) 
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Impoverished EEG Paradigms  
and Environment 

Measurements: 
Ø  256 active EEG electrodes   
Ø  Simultaneous physiological data: 

•  ECG, Breath, Blood Oxygen, EMG 

A typical EEG experiment 

Behavior 
Ø  Button press? 

We must record simultaneously, during 
naturally motivated behavior, 

Ø  What the brain does (high-density EEG) 
Ø  What the brain experiences (  sensory 

scheme recording) 
Ø  What the brain organizes (eye & body 

movements, psychophysiology). 
      - Makeig et al., 2009.  

From Gramann et al, Frontiers in Human Neuroscience, 2010.   

Feasibility Study: VEP on a Treadmill 
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From Gramann et al, Frontiers in Human Neuroscience, 2010.   

Feasibility Study: VEP on a Treadmill 

From Gramann et al, Frontiers in Human Neuroscience, 2010.   
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Mobile Brain/Body Imaging (MOBI) 

	

	


Gedeon Deak et al., 2011. 

Development of Shared Attention 

Spatial Navigation 

The Effect of DBI on EEG and EMG 

Progress in BCIs We Expect to  
See in the Near Future 

§  Direct Control: to comprise the task the user performs (e.g. 
the movement of a prosthetic). 

§  Indirect Control: to use neural information associated with 
the human perception of “errors” to augment control systems. 

§  Communications: to enable patients with little to no 
communication capability to generate speech. 

§  Brain-process modification: to help individuals adjust their 
own brain function to attain a more desirable state. 

§  Neural State Detection: to detect fatigue, attentional, 
arousal, and affective levels, allowing systems or environments 
to adapt to the state of the user, increasing joint user-system 
performance.  


