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Outline

e Blind Source Separation:

— Solving the “cocktail party problem”
e Applications

— Speech separation and clarity

— EEG/ERP

— fMRI (if time permits)
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Brief History of ICA

e Herault & Jutten ("Space or time adaptive signal processing by
neural network models”, Neural Nets for Computing Meeting,
Snowbird, Utah, 1986): Seminal paper, neural network

e Comon (1994): Approximation of MI by 4t order statistics
Bell & Sejnowski (1995): Information Maximization
Amari et al. (1996): Natural Gradient Learning
Cardoso (1996): JADE

Hyvarinen & Oja Nonlinear PCA, FastICA

Applications of ICA to biomedical signals

— EEG/ERP analysis (Makeig, Bell, Jung & Sejnowski, 1996; Jung et
al., 1997; Makeig et al., 1997; Jung et al., 2001)

— fMRI analysis (McKeown, Jung et al. 1998, Jung et al., 2001)
— ECG analysis (Cardoso 1998).
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ICA Theory — Cost Functions

Family of BSS algorithms
Information theory (Infomax)
Bayesian probability theory (Maximum likelihood estimation)
Negentropy maximization
Nonlinear PCA

Statistical signal processing (cumulant maximization, JADE)

Pearlmutter & Parra showed InfoMax, ML estimation are equivalent.
Lee et al. showed negentropy has the equivalent property to
InfoMax.
e Girolami & Fyfe showed nonlinear PCA can be viewed from

information-theoretic principle.
* A unifying Information-theoretic framework for ICA (Lee et al. 1999




Independent Component Analysis

ICA is a method to recover a version, 5y X U

the original sources by m_uItipIying the )
data by a unmixing matrix, OoNA/S oW/ o

u= Wx, ® O O

. . @ O @

where x is our observed signals, a A 0 e
linear mixtures of sources,

xX= As.

WA after learning:
While PCA simply decorrelates the N _
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Statistical Independence

Statistical Independence:

N Lo
fs(s) = [ Fsi(si)
i=1
Or the mutual information:

fs(s)
Hi\le fSZ’(Sz')

I(s;y8;)) = E [m ] =0, for Vi # j
The problem of blind separation is to find W such that the

linear transformation u= WX = WAs reestablishes the con-
dition of statistical mdependence



Entropy
H(X)==> p(x)log(p(x))
xe X

Dice: 1/6
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ICA learning rule

How to make the outputs statistically independent?

Minimize their redundancy or mutual information.
Entropy: H(X)= —E p(x)log(p(x))
xeX

Joint entropy H(X,Y)=- p(x, y)log(p(x, y))

(x,y)EXXY

Mutual Information I(y,y,) = H(y,) + H(y,) - H(y1,Y>)

Minimizing I(y, v,) 2> Maxfmizing H(y.V)
e

=0 if the two variables ICA learning rule
are independent

OH (Y, Vyyeet) o7
AW = LD Vo Dy
W

Natural aradient (Ama?‘ﬁ



Independent Component Analysis
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ICA is a method to recover a version, of the
original sources by multiplying the data by a
unmixing matrix,

u= Wx
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independent, we need to operate on non-

InfoMax (Bell & Sejnowski, 1995)
transformed output variables, y = g(u), such as
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From Bell & Sejnowski Neural Compu. 1995.




ICA learning rule

The learning rule:

OH(Y)
W

AW wiw = 1+ guT|w,

where ¢; = (8/0u;) In(dy;/Ou;).

For super-Gaussian,
¢; =1 —2y;(for logiétic nolinearity).

For sub- and/or super-Gaussian,

b: = + tanh(u;) — u; kurtosis < O
7| —tanh(u;) —u; kurtosis >0



e Remove the mean

X =X - <xX~>.

* ‘Sphere’ the data by
diagonalizing its
covariance matrix,

X = 2<xxT>"12(x-<x>).

Update W accord

0H(y)

AW o ZZY I\ Ty -
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ICA Applications

e Speech enhancement (noisy speech
recognition)

e Biomedical signal processing (EEG,
ERP, fMRI, MEQG)

e Image processing




Example: Speech Separation




Sound Separation Demonstration

PDSOFrTY,_ /- <

Car Kit Demonstration
March 8, 2005

@ VOICE




ICA Applications

e Speech enhancement (noisy speech
recognition)

e Biomedical signal processing (EEG,
ERP, fMRI, MEQG)

e Image processing




Challenges of EE

e Pervasive artifacts

e EEG recordings are
mixtures of all brain

activities arising
from different
networks

e Response variability
e Inverse problem
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EEG Scalp Channels
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u=WX w

From Jung et al., Clinical Neurophysiology, 2000.
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ICA/EEG Assumptions

e Mixing is linear at electrodes
e Propagation delays are negligible

e Component time courses are
independent

e Number of components < number
of channels.




Channels

Independent Component Analysis

x = scalp EEG

x = W1*u

EEGLA

W = unmixing matrix
W*x =u
ICA

W-1 (scalp pro]ectlons)
esooc

Components

u = sources

Time

u = sources
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Independent components of

‘L EEG/ERP
10 Target responses BowW1(0A scalp map ylotted‘.:
. All A12
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\A21 Ay @ —
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P =

From Makeig et al., JNS, 1999. From Jung Makéig, 2009.

Maximum entropy rotation
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Frequently Asked Questions

e What is temporal and spatial ICA?

For EEG, we are looking at temporally
independent brain activities arising from
different brain networks.

For fMRI, the independence is considered over
voxels because of brain modularity. i.e.,
Simplistically, "Different places do different
things."




Temporal ICA
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EEGLAB Workshop, June 26-29, 2007, Aspet: Arnaud Delorme



Frequently Asked Questions (cont.)

e How much data is enough data?

There is no fixed limit to the number of
points needed for a "good" ICA solution
- and in fact no fixed way to judge
whether an ICA solution is "good" or

not.




Frequently Asked Questions (cont.)

e Pre-ICA procedures

— Check the rank of the data (if not full rank, use
PCA)

— 'Messy' channels or epochs should be removed

— Ultra-low frequency activity should be removed,
including the DC offset (a.k.a. remove baseline')

e Check ICA solution prior to further
analysis
— Review component scalp maps and check their
'dipolarity’
— If component maps are 'messy’, remove ‘messy’
epochs/channels and try again...




Frequently Asked Questions (cont.)

e How should the activations be scaled?
U=WX, X=W-1*U
The strength of source activity is distributed between the
columns of W-! and the rows of U.

e Ordering of ICs

Not well-defined and intuitive.

e Can ICA separate ‘correlated’ source
activities?




1. Apply ICA to averaged ERPs
e How many time points are needed for training?

Suggestion: At least several times number of
variables in the unmixing matrix.

e Which EEG processes may express their
independence in the ERP training data?

Suggestion: Decompose the concatenated
collection of ERP averages in respond to the
experimental stimulus and task conditions.

e ICA decomposition of averaged ERPs must be
interpreted with caution.



Practical Issues with ICA of EEG/ERP

2. Apply ICA to continuous EEG data
e Are components spatially stationary through
time?

Suggestion: Perform separate decompositions
of subsets of the recorded data, each
consisting of periods during which the sources
may be stationary.

Or, you can use a mixture of ICA model.

SCCN/UCSD —
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Experiment

o o [ | 0 @

+

Task: Fixate cross while covertly attending to green box. Press
button when circle is flashed in green box.

Subject: 28 normal control, 14 autistic and 8 cerebellar lesion subjects.

Session: 30 72-s task blocks, including 120 targets and 480 nontargets
in each of the 5 locations.
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Amplitude (uV)

Single trials

ERP Image
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Single-trial ERPs at Cz
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Analysis of Single-trial ERPs

ICA applied to ~600 (single-subject, 31-
channel, 1-s) concatenated single-trial
response epochs timelocked to detected
target stimuli

31 independent components having:
o fixed spatial projections to the scalp
e temporally independent time courses
of activation
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|CA-based Artifact Correction

EEG Scalp Channels
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Split Single Trials based on EOG
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Averages of Least, Moderately and Heavily Contaminated Trials
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Stimulus-locked

|C7 activations IC14 activations
0 - - - 0 - - -

100¢ 100
© 200t © 200+t
l®) @)
= e
3 300 S 300
© ©
= 400 ¢ = 400+

500¢ 500¢

600+ 600t

B B =

-100 100 300 500 700 900 -100 100 300 500 700 900
Time (ms) Time (ms)




Response-locked

|C2 activations |C8 activations
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Non-phase locked

IC5 activations IC23 activations
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Characteristics of Independent Components

e Concurrent Activity
e Maximally Temporally Independent

e Overlapping Maps and Spectra
e Dipolar Scalp Maps

e Functionally Independent

e Between-Subject Regularity




Conclusions

e ICA has proven successful in many
data-analysis applications.

e Great care must be taken to examine
the validity of the assumptions that are
used by ICA to derive a decomposition
of the observed signals and/or to
evaluate the reliability and functional
significance of the resulting
components.




Magnetic Resonance Imaging
(MRI and/or functional MRI)

1.

MRI 1s an imaging technique
used to produce high quality
images of the inside of the
human body.

It 1s based on the magnetic
susceptibilities of oxygenated
hemoglobin (HbO2) and
deoxygenated hemoglobin
(HbR) to track the blood-flow
changes related to neuronal
activity, which 1s referred to as
blood-oxygen-level-dependent
(BOLD) contrast. 62



fMRI/BOLD Signal Complexity
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McKeown et al., Human Brain Mapping, 1998



ICA Applied to fMRI Data

Task-related

Machine Noise

Measured
Signal

Arousal

Physiologic
Pulsations

McKeown et al., Human Brain Map., 1998




Analysis of Event-related
fMRI Data

Model-based methods Data-driven methods

> Require a priori knowledge of > Reqmrs minimal space/time
the time course of the assumptions
hemodynamic response > Explore time courses and

> Assume homogeneity across spatial distribution of the data
different brain regions Reveal unforeseen

> Allow tests of statistical activations (time-varying, site-

significance within an assumed depel?dent) _
data+noise model. Provide no noise model for

statistical testing.




ICA Applied to fMRI Data

Component Mixing Measured

Maps > fMRI Signals
. pne) t=1
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Independent fMRI Components

Consistently Transiently Abrupt head
task-related task-related movement

Slow head
movement
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Stability of ICA Component Maps
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Simulated Activation Slice 1 Slice 2
' L L ' = Signal = Signal
Selected voxel time_ . Added Subtracted

course — e

Relative Task
SenSitiVity - =~ With simulatec

activation

— Without

3

ICA Time (min)
VS Recovered Components

Correlation

Simulated task

Actual task

UV ERW
v

(Simulation)

Active voxels by
correlation
(I[r] > 0.197, n = 195)




FMRLAB, a Matlab-based open-
source environment for fMRI analysis.....
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