

N1	C ·	X <i>c</i>		A 1
Nucleus	Spin	Magnetic Moment	$\gamma/(2\pi)$ (MHz/Tesla)	Abundance
¹ H	1/2	2.793	42.58	88 M
²³ Na	3/2	2.216	11.27	80 mM
³¹ P	1/2	1.131	17.25	75 mM

Larmor Frequency $\omega = \gamma B$ Angular frequency in rad/sec $f = \gamma B/(2\pi)$ Frequency in cycles/sec or Hertz,
Abbreviated HzFor a 1.5 T system, the Larmor frequency is 63.86 MHz
which is 63.86 million cycles per second. For comparison,
KPBS-FM transmits at 89.5 MHz.Note that the earth's magnetic field is about 50 μ T, so that
a 1.5T system is about 30,000 times stronger.

Notation and Units

1 Tesla = 10,000 Gauss Earth's field is about 0.5 Gauss 0.5 Gauss = 0.5×10^{-4} T = 50 μ T $\gamma = 26752$ radians/second/Gauss $\gamma = \gamma/2\pi = 4258$ Hz/Gauss = 42.58 MHz/Tesla

TT. Liu, BE280A, UCSD Fall 2012

3

Time-Varying Gradient Fields In the presence of time-varying gradients the frequency as a function of space and time is: $\omega(\vec{r},t) = \gamma B_z(\vec{r},t)$ $= \gamma B_0 + \gamma \vec{G}(t) \cdot \vec{r}$ $= \omega_0 + \Delta \omega(\vec{r},t)$

TT. Liu, BE280A, UCSD Fall 2012

The transverse magnetization is then given by $M(\vec{r},t) = M(\vec{r},0)e^{-t/T_2(\vec{r})}e^{\phi(\vec{r},t)}$ $= M(\vec{r},0)e^{-t/T_2(\vec{r})}e^{-j\omega_0 t}\exp\left(-j\int_o^t\Delta\omega(\vec{r},t)d\tau\right)$ $= M(\vec{r},0)e^{-t/T_2(\vec{r})}e^{-j\omega_0 t}\exp\left(-j\gamma\int_o^t\vec{G}(\tau)\cdot\vec{r}d\tau\right)$

Recap

- Frequency = rate of change of phase.
- Higher magnetic field -> higher Larmor frequency -> phase changes more rapidly with time.
- With a constant gradient G_x, spins at different x locations precess at different frequencies -> spins at greater x-values change phase more rapidly.
- With a constant gradient, distribution of phases across x locations changes with time. (phase modulation)
- More rapid change of phase with x -> higher spatial frequency k_x

TT. Liu, BE280A, UCSD Fall 2012

K-space

At each point in time, the received signal is the Fourier transform of the object

 $s(t) = M(k_x(t), k_y(t)) = F[m(x, y)]_{k_x(t), k_y(t)}$

evaluated at the spatial frequencies:

$$k_x(t) = \frac{\gamma}{2\pi} \int_0^t G_x(\tau) d\tau$$
$$k_y(t) = \frac{\gamma}{2\pi} \int_0^t G_y(\tau) d\tau$$

Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k-space to form our image.

TT. Liu, BE280A, UCSD Fall 2012

Units Spatial frequencies (k_x, k_y) have units of 1/distance. Most commonly, 1/cm Gradient strengths have units of (magnetic field)/ distance. Most commonly G/cm or mT/m $\gamma/(2\pi)$ has units of Hz/G or Hz/Tesla. $k_x(t) = \frac{\gamma}{2\pi} \int_0^t G_x(\tau) d\tau$ = [Hz/Gauss][Gauss/cm][sec]= [1/cm]

TT. Liu, BE280A, UCSD Fall 2012