Bioengineering 280A
Principles of Biomedical Imaging

## Fall Quarter 2012 <br> MRI Lecture 5

TT. Liu, BE280A, UCSD Fall 2012

## Example

Consider the k -space trajectory shown below. ADC samples are acquired at the points shown with $\Delta t=10 \mu$ sec. The desired FOV (both x and y ) is 10 cm and the desired resolution (both x and $y$ ) is 2.5 cm . Draw the gradient waveforms required to achieve the $k$-space trajectory. Label Also, make sure to label the time axis correctly.


TT. Liu, BE280A, UCSD Fall 2012

## Sampling

In practice, an even number (typically power of 2) sample is usually taken in each direction to take advantage of the Fast Fourier Transform (FFT) for reconstruction.


TT. Liu, BE280A, UCSD Fall 2012
FOV/4


TT. Liu, BE280A, UCSD Fall 2012
GE Medical Systems 2003


Flgure 7-31 Default Axial Directions


Flgure 7.32 Default Sagittal and Coronal Direction




## Rotating Frame of Reference

Reference everything to the magnetic field at isocenter.




## Rotating Frame Bloch Equation

$\frac{\mathrm{d} \mathbf{M}_{r o t}}{d t}=\mathbf{M}_{r o t} \times \gamma \mathbf{B}_{\text {eff }}$
$\mathbf{B}_{e f f}=\mathbf{B}_{\text {rot }}+\frac{\omega_{\text {rot }}}{\gamma} ; \omega_{\text {rot }}=\left[\begin{array}{c}0 \\ 0 \\ -\omega\end{array}\right]$

Note: we use the RF frequency to define the rotating frame. If this RF frequency is on-resonance, then the main B0 field doesn' t cause any precession in the rotating frame. However, if the RF frequency is off-resonance, then there will be a net precession in the rotating frame that is give by the difference between the RF frequency and the local Larmor frequency.
TT. Liu, BE280A, UCSD Fall 2012

$$
\begin{aligned}
\text { Let } \mathbf{B}_{\text {rot }} & =B_{1}(t) \mathbf{i}+B_{0} \mathbf{k} \\
\mathbf{B}_{e f f} & =\mathbf{B}_{\text {rot }}+\frac{\omega_{\text {rot }}}{\gamma} \\
& =B_{1}(t) \mathbf{i}+\left(B_{0}-\frac{\omega}{\gamma}\right) \mathbf{k} \\
\text { If } \omega & =\omega_{0} \\
& =\gamma B_{0} \\
\text { Then } \mathbf{B}_{e f f} & =B_{1}(t) \mathbf{i}
\end{aligned}
$$



## Relaxation

An excitation pulse rotates the magnetization vector away from its equilibrium state (purely longitudinal). The resulting vector has both longitudinal $\mathbf{M}_{\mathbf{z}}$ and tranverse $\mathbf{M}_{\mathbf{x y}}$ components.

Due to thermal interactions, the magnetization will return to its equilibrium state with characteristic time constants.
$\mathrm{T}_{1}$ spin-lattice time constant, return to equilibrium of $\mathbf{M}_{\mathbf{z}}$
$\mathrm{T}_{2}$ spin-spin time constant, return to equilibrium of $\mathbf{M}_{\mathrm{xy}}$
tT. Liu, BE280A, UCSD Fall 2012

> Example
> $\tau=400 \mu \mathrm{sec} ; \theta=\pi / 2$
> $B_{1}=\frac{\theta}{\gamma \tau}=\frac{\pi / 2}{2 \pi(4257 \mathrm{~Hz} / \mathrm{G})(400 e-6)}=0.1468 \mathrm{G}$
TT. Liu, BE280A. UCSD Fall 2012

## Longitudinal Relaxation <br>  <br> After a 90 degree pulse <br> 

Due to exchange of energy between nuclei and the lattice (thermal vibrations). Process continues until thermal equilibrium as determined by Boltzmann statistics is obtained.

The energy $\Delta \mathrm{E}$ required for transitions between down to up spins increases with field strength, so that $\mathrm{T}_{1}$ increases with $\mathbf{B}$
tT. Liu, BE280A, UCSD Fall 2012


## Transverse Relaxation

$$
\frac{d \mathbf{M}_{x y}}{d t}=-\frac{M_{x y}}{T_{2}}
$$



Each spin's local field is affected by the z-component of the field due to other spins. Thus, the Larmor frequency of each spin will be slightly different. This leads to a dephasing of the transverse magnetization, which is characterized by an exponential decay.
$T_{2}$ is largely independent of field. $T_{2}$ is short for low frequency fluctuations, such as those associated with slowly tumbling macromolecules.

TT. Liu, BE280A, UCSD Fall 2012

## T2 Relaxation

Free Induction Decay (FID)

$\begin{aligned} & \text { After a } 90 \text { degree } \\ & \text { excitation }\end{aligned} \quad M_{x y}(t)=M_{0} e^{-t / T_{2}}$

TT. Liu, BE280A, UCSD Fall 2012

## T2 Relaxation



TT. Liu, BE280A, UCSD Fall 2012
Credit: Lary Frank

|  | $\Gamma 2 \mathrm{~V}$ | 1ues |
| :---: | :---: | :---: |
| Tissue | T 2 (ms) | Solids exhibit very short $\mathrm{T}_{2}$ relaxation times because there are many low frequency interactions between the immobile spins. |
| gray matter | 100 |  |
| white matter | 92 |  |
| muscle | 47 |  |
| fat | 85 |  |
| kidney | 58 | On the other hand, liquids show relatively long $T_{2}$ values, because the spins are highly mobile and net fields average out. |
| liver | 43 |  |
| CSF | 4000 |  |
| Table: adapted from Nishimura, Table 4.2 |  |  |
| TT. Liu, BE280A, UCSD Fall 2012 |  |  |



## Example


$\mathrm{T}_{1}$-weighted
Density-weighted
$\mathrm{T}_{2}$-weighted

Questions: How can one achieve T2 weighting? What are the relative T2's of the various tissues?

Tt. Liu, BE280A, UCSD Fall 2012

## Bloch Equation

$$
\frac{d \mathbf{M}}{d t}=\underbrace{\mathbf{M} \times \gamma \mathbf{B}}_{\text {Precession }}-\underbrace{\frac{M_{x} \mathbf{i}+M_{y} \mathbf{j}}{T_{2}}}_{\begin{array}{c}
\text { Transverse } \\
\text { Relaxation }
\end{array}}-\frac{\left(M_{z}-M_{0}\right) \mathbf{k}}{\underbrace{T_{1}}_{\begin{array}{c}
\text { Longitudinal } \\
\text { Relaxation }
\end{array}}}
$$

$\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions.

[^0]Free precession about static field

$$
\begin{aligned}
\frac{d \mathbf{M}}{d t} & =\mathbf{M} \times \gamma \mathbf{B} \\
& =\gamma\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
M_{x} & M_{y} & M_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \\
& =\gamma\left(\begin{array}{c}
\hat{i}\left(B_{z} M_{y}-B_{y} M_{z}\right) \\
-\hat{j}\left(B_{z} M_{x}-B_{x} M_{z}\right) \\
\hat{k}\left(B_{y} M_{x}-B_{x} M_{y}\right)
\end{array}\right)
\end{aligned}
$$

TT. Liu, BE280A, UCSD Fall 2012

## Precession

$\left[\begin{array}{l}d M_{x} / d t \\ d M_{y} / d t \\ d M_{z} / d t\end{array}\right]=\gamma\left[\begin{array}{ccc}0 & B_{0} & 0 \\ -B_{0} & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}M_{x} \\ M_{y} \\ M_{z}\end{array}\right]$

Useful to define
$M \equiv M_{x}+j M_{y}$

$$
d M / d t=d / d t\left(M_{x}+i M_{y}\right)
$$

$$
=-j \gamma B_{0} M
$$



## Solution is a time-varying phasor

$$
M(t)=M(0) e^{-j \gamma B_{0} t}=M(0) e^{-j \omega_{0} t}
$$

TT. Liu, BE280A, UCSD Fall 2012
Question: which way does this rotate with time?

Free precession about static field

$$
\begin{aligned}
{\left[\begin{array}{l}
d M_{x} / d t \\
d M_{y} / d t \\
d M_{z} / d t
\end{array}\right] } & =\gamma\left[\begin{array}{l}
B_{z} M_{y}-B_{y} M_{z} \\
B_{x} M_{z}-B_{z} M_{x} \\
B_{y} M_{x}-B_{x} M_{y}
\end{array}\right] \\
& =\gamma\left[\begin{array}{ccc}
0 & B_{z} & -B_{y} \\
-B_{z} & 0 & B_{x} \\
B_{y} & -B_{x} & 0
\end{array}\right]\left[\begin{array}{l}
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right]
\end{aligned}
$$

TT. Liu, BE280A, UCSD Fall 2012


## Z-component solution

$$
M_{z}(t)=M_{0}+\left(M_{z}(0)-M_{0}\right) e^{-t / T_{1}}
$$

Saturation Recovery
If $M_{z}(0)=0$ then $M_{z}(t)=M_{0}\left(1-e^{-t / T_{1}}\right)$

Inversion Recovery
If $M_{z}(0)=-M_{0}$ then $M_{z}(t)=M_{0}\left(1-2 e^{-t / T_{1}}\right)$

TT. Liu, BE280A, UCSD Fall 2012

## Summary

1) Longitudinal component recovers exponentially.
2) Transverse component precesses and decays exponentially.


Source: http://mrsrl.stanford.edu/~brian/mri-movies/
тT. Liu, BE280, UCSD Fall 2012

TT. Liu, BE280A, UCSD Fall 2012

## Transverse Component

$M \equiv M_{x}+j M_{y}$
$d M / d t=d / d t\left(M_{x}+i M_{y}\right)$
$=-j\left(\omega_{0}+1 / T_{2}\right) M$
$M(t)=M(0) e^{-j \omega_{0} t} e^{-t / T_{2}}$


## Summary

1) Longitudinal component recovers exponentially.
2) Transverse component precesses and decays exponentially.


Fact: Can show that $\mathrm{T}_{2}<\mathrm{T}_{1}$ in order for $|\mathrm{M}(\mathrm{t})| \leq \mathrm{M}_{0}$
Physically, the mechanisms that give rise to $\mathrm{T}_{1}$ relaxation
also contribute to transverse $\mathrm{T}_{2}$ relaxation.
TT. Liu, BE280A, UCSD Fall 2012

## Static Inhomogeneities

In the ideal situation, the static magnetic field is totally uniform and the reconstructed object is determined solely by the applied gradient fields. In reality, the magnet is not perfect and will not be totally uniform. Part of this can be addressed by additional coils called "shim" coils, and the process of making the field more uniform is called "shimming". In the old days this was done manually, but modern magnets can do this automatically.

In addition to magnet imperfections, most biological samples are inhomogeneous and this will lead to inhomogeneity in the field. This is because, each tissue has different magnetic properties and will distort the field.

TT. Liu, BE280A, UCSD Fall 2012

## Static Inhomogeneities

The spatial nonuniformity in the field can be modeled by adding an additional term to our signal equation.

$$
\begin{aligned}
s_{r}(t) & =\int_{V} M(\vec{r}, t) d V \\
& =\int_{x} \int_{y} \int_{z} M(x, y, z, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} e^{-j \omega_{E}(\vec{r}) t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y d z
\end{aligned}
$$

The effect of this nonuniformity is to cause the spins to dephase with time and thus for the signal to decrease more rapidly. To first order this can be modeled as an additional decay term of the form

$$
s_{r}(t)=\int_{x} \int_{y} \int_{z} M(x, y, z, 0) e^{-t / T_{2}(\vec{r})} e^{-t / T_{2}^{\prime}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y d z
$$

TT. Liu, BE280A, UCSD Fall 2012

## $\mathrm{T}_{2}{ }^{*}$ decay

The overall decay has the form.

$$
\exp \left(-t / T_{2}^{*}(\vec{r})\right)
$$

where
$\frac{1}{T_{2}^{*}}=\frac{1}{T_{2}}+\frac{1}{T_{2}^{\prime}}$

Due to random motions of spins.
Not reversible.
Due to static inhomogeneities. Reversible with a spin-echo sequence.

TT. Liu, BE280A, UCSD Fall 2012


Spin Echo


Source: http://mrsrl.stanford.edu/~brian/mri-movies/ TT. Liu, BE280A, UCSD Fall 2012

There is nothing that nuclear spins will not do for you, as
long as you treat them as human beings. Erwin Hahn TT. Liu, BE280A, UCSD Fall 2012 Image: Larry Frank


Spin-echo TE $=35 \mathrm{~ms} \quad$ Gradient Echo $\mathrm{TE}=14 \mathrm{~ms}$

TT. Liu, BE280A, UCSD Fall 2012

## Image Contrast

Different tissues exhibit different relaxation rates, $\mathrm{T}_{1}, \mathrm{~T}_{2}$, and $\mathrm{T}_{2}{ }^{*}$. In addition different tissues can have different densities of protons. By adjusting the pulse sequence, we can create contrast between the tissues. The most basic way of creating contrast is adjusting the two sequence parameters: TE (echo time) and TR (repetition time).

TT. Liu, BE280A, UCSD Fall 2012

## T1-Weighted Scans

Make TE very short compared to either $\mathrm{T}_{2}$ or $\mathrm{T}_{2}{ }^{*}$. The resultant image has both proton and $\mathrm{T}_{1}$ weighting.

$$
I(x, y) \approx \rho(x, y)\left[1-e^{-T R / T_{1}(x, y)}\right]
$$

TT. Liu, BE280A, UCSD Fall 2012

## Saturation Recovery Sequence



Gradient Echo ${ }^{\text {TR }}$
TR

$$
I(x, y)=\rho(x, y)\left[1-e^{-T R / T_{1}(x, y)}\right] e^{-T E / T_{2}^{*}(x, y)}
$$


$\xrightarrow[\text { Spin Echo }]{\stackrel{\mathrm{TE}}{\longleftrightarrow}}$
$I(x, y)=\rho(x, y)\left[1-e^{-T R / T_{1}(x, y)}\right] e^{-T E / T_{2}(x, y)}$
TT. Liu, BE280A, UCSD Fall 2012

## T2-Weighted Scans

Make TR very long compared to $T_{1}$ and use a spin-echo pulse sequence. The resultant image has both proton and $\mathrm{T}_{2}$ weighting.

$$
I(x, y) \approx \rho(x, y) e^{-T E / T_{2}}
$$

TT. Liu, BE280A, UCSD Fall 2012

## Proton Density Weighted Scans

Make TR very long compared to $\mathrm{T}_{1}$ and use a very short TE. The resultant image is proton density weighted.

$$
I(x, y) \approx \rho(x, y)
$$

FLASH sequence


TR
Gradient Echo ${ }^{\text {TR }}$

$$
\begin{aligned}
& \text { Gradient Echo } \\
& I(x, y)=\rho(x, y) \frac{\left[1-e^{-T R / T_{1}(x, y)}\right] \sin \theta}{\left[1-e^{-T R / T_{1}(x, y)} \cos \theta\right]} \exp \left(-T E / T_{2}^{*}\right)
\end{aligned}
$$

Signal intensity is maximized at the Ernst Angle

$$
\theta_{E}=\cos ^{-1}\left(\exp \left(-T R / T_{1}\right)\right)
$$

FLASH equation assumes no coherence from shot to shot. In practice this is achieved with RF spoiling.




[^0]:    TT. Liu, BE280A, UCSD Fall 2012

