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Abstract: In this study, a linear decomposition technique, independent component analysis (ICA), is
applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial
filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially
fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data and their
decomposition are displayed using a new visualization tool, the “ERP image,” that can clearly characterize
single-trial variations in the amplitudes and latencies of evoked responses, particularly when sorted by a
relevant behavioral or physiological variable. These tools were used to analyze data from a visual selective
attention experiment on 28 control subjects plus 22 neurological patients whose EEG records were heavily
contaminated with blink and other eye-movement artifacts. Results show that ICA can separate artifac-
tual, stimulus-locked, response-locked, and non-event-related background EEG activities into separate
components, a taxonomy not obtained from conventional signal averaging approaches. This method
allows: (1) removal of pervasive artifacts of all types from single-trial EEG records, (2) identification and
segregation of stimulus- and response-locked EEG components, (3) examination of differences in single-
trial responses, and (4) separation of temporally distinct but spatially overlapping EEG oscillatory
activities with distinct relationships to task events. The proposed methods also allow the interaction
between ERPs and the ongoing EEG to be investigated directly. We studied the between-subject compo-
nent stability of ICA decomposition of single-trial EEG epochs by clustering components with similar
scalp maps and activation power spectra. Components accounting for blinks, eye movements, temporal
muscle activity, event-related potentials, and event-modulated alpha activities were largely replicated
across subjects. Applying ICA and ERP image visualization to the analysis of sets of single trials from
event-related EEG (or MEG) experiments can increase the information available from ERP (or ERF) data.
Hum. Brain Mapping 14:166–185, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

Single-trial event-related potential (ERP) data are usu-
ally averaged prior to analysis to increase their signal/
noise relative to non-time and -phase-locked electroen-
cephalographic (EEG) activity and non-neural artifacts.
However, response averaging ignores the fact that the
response may vary widely across trials in amplitude,
time course, and scalp distribution. This temporal and
spatial variability is hidden by response averaging, but
may in fact reflect changes in subject performance or in
subject state possibly linked to fluctuations in expecta-
tion, attention, arousal, task strategy, or other factors
[Haig et al., 1995; Yabe et al., 1993]. Thus, conventional
averaging methods may not be suitable for investigating
brain dynamics arising from unpredictable changes in
subject state and/or from complex interactions between
subject state and experimental events.

Analysis of single event-related trial epochs may
potentially reveal more information about event-re-
lated brain dynamics than simple response averaging,
but faces three signal processing challenges: (1) diffi-
culties in identifying and removing artifacts associ-
ated with blinks, eye-movements and muscle noise,
which are a serious problem for EEG interpretation
and analysis, especially when blinks and muscle
movements occur quite frequently as with some pa-
tient groups; (2) poor signal-to-noise ratio arising from
the fact that non-phase-locked background EEG activ-
ities typically are much larger than phase-locked re-
sponse activity, making extraction of event-related
brain dynamics difficult; (3) trial-to-trial variability in
latencies and amplitudes of both event-related re-
sponse features and endogenous EEG measures. In
large part, these problems are hidden rather than
solved by response averaging.

EEG artifacts

Contamination of EEG activity by eye movements,
blinks, and muscle artifacts seriously interfere with
the interpretation and analysis of ERPs. A common
strategy is to average trials time-locked to all similar
experimental events and discard or ignore averages of
data from frontal and temporal electrodes. Often, EEG
segments with artifacts larger than an arbitrarily pre-
set value are rejected. However, when limited data are
available, or blinks and muscle movements occur too
frequently as with some patient groups, the amount of
data lost to artifact rejection may be unacceptable. For
example, Small [1971] reported a visual ERP experi-
ment conducted on autistic children who produced
EOG artifacts in nearly 100% of the trials. Under these

conditions, differences in background EEG make av-
eraged ERPs of the few artifact-free trials too unstable
to allow useful analysis.

Other methods attempt to regress out eye move-
ment artifacts based on reference signals collected
near the eyes [Hillyard and Galambos, 1970; Verleger
et al., 1982; Whitton et al., 1978; Woestenburg et al.,
1983a]. However, these methods also eliminate re-
corded activity common to the reference channel and
neighboring electrodes, and may also spread neural
activity unique to the reference channel into other
sites. Better methods are needed for removing artifacts
that preserve all of the EEG data prior to averaging or
single-trial analysis.

Spontaneous EEG

ERPs, particularly those evoked by visual stimuli, of-
ten contain prominent remnants of rhythmic EEG activ-
ity, particularly at alpha frequencies, although non-vi-
sual, non-alpha oscillatory ERP activity may also occur
[Makeig and Galambos, 1982]. In some subjects, large
amounts of residual alpha activity may make accurate
assessment of standard ERP peak measures impossible.
This so-called ERP “alpha ringing” may represent stim-
ulus-induced phase resetting of ongoing alpha activity
[Brandt, 1997; Kolev and Yordanova, 1997] from multi-
ple alpha processes [Florian et el., 1998], and may differ-
entially affect the amplitudes of both early [Brandt et al.,
1991] and late [Haig and Gordon, 1998] ERP compo-
nents. Interactions between pre-stimulus theta activity
and late ERP components have also been noted [Polich,
1997; Yordanova and Kolev, 1997]. Improved separation
of artifacts, background EEG processes, and single-trial
ERP components could allow more accurate ERP mea-
surements, as well as more detailed study of interactions
between evoked response features and ongoing EEG
activity.

Response variability

The late positive complex (LPC), also called the P300
or P3, in responses to anticipated but unpredictable stim-
uli typically peaks more than 300 ms after target onset.
However, LPC peak amplitudes, latencies, and wave
shape may vary widely from trial to trial [Kutas et al.,
1977]. Several studies have reported a number of differ-
ent single-trial response subtypes [Haig et al., 1995; Su-
wazono et al., 1994]. Classifying subtypes of single-trial
scalp ERPs may allow investigating brain dynamics
involving transitory or intermittent subject cognitive
states, but is difficult because the presence of large arti-
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facts and non-task-related background EEG activity in
single trials.

New approaches

We introduce here an approach to analyzing and
visualizing multichannel single-trial unaveraged ERP
records that alleviates these problems. First, we de-
scribe a new visualization tool, the “ERP image,” an
effective method for visualizing phase, amplitude,
and timing relations between event-related EEG activ-
ity time-locked to experimental events (e.g., stimulus
onsets and/or subject responses) in sets of single tri-
als. We then demonstrate the benefits of decomposing
sets of multichannel single-trial ERP epochs using
blind source separation [Jutten and Herault, 1991]. In
this study, we apply independent component analysis
(ICA) [Comon, 1994] using the infomax approach of
Bell and Sejnowski [1995], Amari et al. [1996], and Lee
et al. [1999] to carry out blind source separation. Info-
max ICA is one of a family of algorithms [Cardoso and
Laheld, 1996; Comon, 1994; Jutten and Herault, 1991]
that exploit independence to perform blind source
separation. ICA algorithms can separate complex mul-
tichannel data into spatially fixed and temporally in-
dependent components whose linear mixtures form
the input data records, without detailed models of
either the dynamics or the spatial structure of the
separated components.

These analytical tools were applied to 50 sets of single-
trial EEG epochs collected from 28 normal controls and
22 neurologic patients. In this paper, we demonstrate,
through three data sets, the power of these new analysis
and visualization methods for increasing the informa-
tion about event-related brain dynamics that can be de-
rived from both “clean” or “noisy” EEG data. Improve-
ments in analyzing data heavily contaminated by
movement artifacts may be important in clinical and
developmental EEG studies. Our approach may also
increase the range of usable paradigms for studies of
normal adult brain processing. When ICA was applied
to single-trial target-response epochs, the derived com-
ponents were time-locked to stimulus onsets and/or
subject responses in distinctly different ways. We also
propose an effective method for deriving optimized ERP
averages with minimal temporal smearing from perfor-
mance fluctuations.

METHODS AND MATERIALS

Subjects

Data were collected from 28 normal controls, and
ten high-functioning autistic and 12 brain lesion sub-

jects. All subjects had normal or corrected-to-normal
vision. The control subjects had no history of sub-
stance abuse, special education, major medical or psy-
chiatric illness, or developmental or neurological dis-
order. The autistic subjects met DSM-III-R [American
Psychiatric Association, 1987] criteria for autistic dis-
order, as well as criteria from the Autism Diagnostic
Interview, the Autism Diagnostic Observation Sched-
ule [Lord et al., 1994], and the Childhood Autism
Rating Scale [Schopler et al., 1980]. Lesion sites in the
patients were verified by neuroradiological examina-
tion of magnetic resonance images. The stroke and
autistic subjects had no additional neurological or psy-
chiatric diagnoses.

EEG data collection

EEG data were recorded from 31 scalp electrodes, 29
placed at locations based on a modified International
10-20 system, one placed below the right eye (VEOG),
and one placed at the left outer canthus (HEOG). All
31 channels were referred to the right mastoid and
were digitally sampled for analysis at 256 Hz with a
0.01- to 100-Hz analog bandpass plus a 50-Hz low-
pass filter. Subjects participated in a 2-hour visual
spatial selective attention task in which they were
instructed to attend to filled circles flashed in random
order in five locations laterally arrayed 0.8 cm above a
central fixation point. Locations were outlined by five
evenly spaced 1.6-cm blue squares displayed on a
black background at visual angles of 0°, 6 2.7°, and 6
5.5° from fixation. An attended location was marked
by a green square throughout each 72-sec experimen-
tal block. Subjects were instructed to maintain fixation
on the central cross and press a button as quickly as
possible each time they saw a filled circle appear in the
attended location. The location of the attended square
was counterbalanced across experimental blocks [for
further details see Makeig et al., 1999a; Townsend and
Courchesne, 1994]. Prior to analysis, those trials
wherein the subject blinked or moved the eyes at the
moment of presentation of the visual stimulus were
rejected because stimulus perception might have been
impaired.

A visualization tool, the ERP image

The “ERP image” is a new method for visualizing
variability in the latencies and amplitudes of event-
related responses [Jung et al., 1999, 2000b, 2001]. To
form an ERP image, potentials recorded at one scalp
channel in each trial (or the time courses of activations
of one response component) are sorted in order of a
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relevant response measure (e.g., subject response
time) and then plotted as parallel colored lines form-
ing a colored rectangular image. The ERP image may
be displayed before or after smoothing with a narrow
(e.g., 2-30 trial) moving window to increase the sa-
lience of time- and/or phase-locked response features.

Independent component analysis

Independent component analysis [Comon, 1994] is a
method for solving the blind source separation prob-
lem [Jutten and Herault, 1991]: to recover N-indepen-
dent source signals, s 5 {s1(t),. . .,sN(t)} (e.g., different
voices, music, or other sound sources) from N linear
mixtures, x 5 {x1(t),. . .,xN(t)}, modeled as the result of
multiplying the matrix of source activity waveforms,
s, by an unknown square matrix A (i.e., x 5 As). Given
minimal a priori knowledge of the nature of the
sources or of the mixing process, the task is to recover
a version, u, of the original sources, identical to s, save
for scaling and source order. To do this, it is necessary
to find a square matrix, W, specifying filters that lin-
early invert the mixing process (i.e., u 5 Wx). The key
assumption used to distinguish sources from mixtures
is that sources, si, are statistically independent, though
their mixtures, xi, are not. In contrast with decorrela-
tion techniques such as PCA, which ensure only that
output pairs are uncorrelated (, ui uj. 5 0, @ ij), ICA
approaches a much stronger criterion, statistical inde-
pendence, which occurs when the multivariate prob-
ability density function (p.d.f.), f(u), factorizes, e.g.,

fu~u! 5 P
i51

N

fui~ui!

Strict statistical independence requires that all second-
order and higher-order correlations of the ui are zero,
whereas decorrelation only seeks to minimize second-
order statistics (covariance or correlation).

Bell and Sejnowski [1995] proposed a simple neural
network “infomax” algorithm that blindly separates
mixtures, x, of independent sources, s, using informa-
tion maximization (infomax). They showed that max-
imizing the joint entropy, H(y), of the output of a
neural processor minimizes the mutual information
among the output components, yI 5 g(ui), where g(ui)
is an invertible bounded nonlinearity and u 5 Wx.
Recently, Lee et al. [1999] extended the ability of the
infomax algorithm to perform blind source separation
on linear mixtures of sources having either sub- or
super-Gaussian distributions. For further details, see

these sources and Jung et al. [2000a, 2000b]. Here, we
apply the infomax algorithm to collections of 31-chan-
nel single-trial EEG records from a visual selective-
attention experiment.

Applying ICA to single-trial EEG epochs

Use of ICA for blind source separation of EEG data
is based on two plausible premises: (1) EEG data re-
corded at multiple scalp sensors are linear sums of
temporally independent components arising from
spatially fixed brain networks or extra-brain sources;
(2) the spatial spread of electric current from sources
by volume conduction does not involve significant
time delays. For further details regarding ICA as-
sumptions underlying EEG analysis, see Makeig et al.
[1997, 1999a], Jung et al. [1998a] (see Fig. 1)

Several previous applications of ICA to electrophys-
iological data have focused on event-related response
averages [Jung et al., 1998a; Makeig et al., 1996, 1997,
1999a, 1999b]. Applying ICA to spontaneous or event-
related single-trial EEG epochs is more promising but
has been less explored [Jung et al., 1999, 2000b, 2001;
Makeig et al., 1996, 2000a, 2000b, 2000c; McKeown et
al., 1998]. In single-trial EEG analysis, the rows of the
input matrix, x, are EEG signals recorded at different
electrodes, and the columns are measurements re-
corded at different time points (Fig. 1A, left). ICA
finds an “unmixing” matrix, W, which decomposes or
linearly unmixes the multichannel scalp data into a
sum of maximally temporally independent and spa-
tially fixed components, u 5 Wx. The rows of the
output data matrix, u, are time courses of activation of
the ICA components. The columns of the inverse ma-
trix, W21, give the relative projection strengths of the
respective components at each of the scalp sensors
(Fig. 1A, right). These scalp weights give the scalp
topography of each component, and provide evidence
for the components’ physiological origins (e.g., eye
activity projects mainly to frontal sites, etc.). All scalp
maps shown here were computed using the original
right-mastoid reference. Event-related brain signals
accounted for by single- or multicomponents can be
obtained with true polarity and mV amplitudes by
projecting selected ICA components back onto the
scalp, x0 5 W21 u0, where u0 is the matrix, u, of
activation waveforms with rows representing activa-
tions of irrelevant component activations set to zero
(Fig. 1B).

Component clustering

To study the cross-subject stability of indepen-
dent components derived by infomax ICA applied
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to single-trial epochs, a symmetrical Mahalanobis
distance measure (see Appendix), calculated from a
combination of scalp maps and power spectra of the
component activations was used to cluster the set of
components obtained from multiple subjects. Indi-
vidual component clusters were characterized by
their mean cluster map and activity spectrum.

Numerical methods

Extended-ICA decomposition was performed on
31-channel, 1-sec data epochs from 300 to 700 target
stimulus trials for each of 28 normal control and 22
clinical subjects using routines coded in MATLAB 5
and C running on a Pentium II 400 MHz PC with 512
MB RAM. Only target trials in which the subject
pressed the response button within the allowed (150–
1000 msec) time window were analyzed. The learning
batch size was 50. The initial learning rate, 0.004, was
gradually reduced to 1027 during training, which re-
quired 2–6 hours per subject to converge in MATLAB
(or less than one-half hour using optimized C-lan-
guage binary code). Our previous results [Jung et al.,
2000a; Makeig et al., 1996, 1997, 1998, 1999a] as well as
the results we report here have shown that ICA de-
composition is relatively insensitive to the exact choice
or learning rate or batch size. A MATLAB toolbox for
performing the analyses and visualizing the results,
plus binary code for speeding the decomposition is
available for download at http://www.cnl.salk.edu/
;scott/ica.html.

Characterizing independent components

For each set of 31-channel single-trial target re-
sponses, ICA derived 31 maximally independent com-
ponents having temporally distinct activities arising
from different brain or extra-brain sources.

Eye blink components

Blink-related component(s) were identified by the
following procedure. (1) All 31-channel ICA activa-
tions were displayed and searched for the compo-
nent(s) with time courses resembling blink activity
(brief, large amplitude changes). (2) The scalp topog-
raphies of the candidate components were plotted to
provide further evidence of their physiological origin
(eye activity projects most strongly to periocular and
far frontal sites). (3) When necessary, source localiza-
tion was performed to find effective dipoles for the
component(s) using BESA [Scherg, 1990] to judge
whether these were located in or near the eyes.

Eye movement components

Component(s) accounting for lateral eye move-
ments time locked to visual stimulus presentations
were identified by the following. (1) Separately aver-
aging the single-trial EEG records time-locked to tar-
get stimuli presented at five different locations. (2)

Figure 1.
Schematic overview of ICA applied to EEG data. (A) A matrix of
single-trial EEG data, x, recorded at multiple scalp sites (only four
are shown), are used to train an “unmixing” weight matrix, W, to
minimize the statistical dependence of the equal number of out-
puts, u 5 Wx (four shown here). After training, ICA components
consist of time series (the rows of u) giving the time courses of
activation of each component, plus fixed scalp topographies (the
columns of W21) giving the projections of each component onto
the scalp sensors. (B) Some ICA components account exclusively
or predominantly for artifactual activity, for example component
IC1, generated by blinks, or IC4, generated by temporal muscle
activity. Others account for various evoked and/or spontaneous
EEG activity (e.g., IC2, IC3). Artifact-free EEG signals, x0, can be
obtained by mixing and projecting back onto the scalp channels
selected non-artifactual ICA components (IC2 1 IC3) by multi-
plying the selected activation waveforms, u0, by the inverse mixing
matrix, W21 [Adapted from Jung et al., 2000b].
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Applying the spatial filters derived by ICA from all
the EEG trials to the resulting five 31-channel ERPs
and searching for components whose time courses
differed systematically with stimulus location. Our
assumption here was that involuntary saccadic move-
ments following stimulus presentations would sys-
tematically change in both amplitude and direction as
a function of the distance and direction from the fix-
ation point to target location. There should be a sys-
tematic relationship for components accounting for
saccadic eye movements, but not for other compo-
nents accounting for other brain (or extra-brain) activ-
ities. (3) Verifying the nature of the candidate eye-
movement components by plotting their scalp
topographies. The components accounting for lateral
eye movements projected most strongly to far frontal
sites, and showed a polarity difference between the
two periocular sites.

ERP images were used to identify the nature of
neural activity accounted by other component. One-
second single-trial activations of each component
were aligned to stimulus onsets and to the subject’s
responses to help us determine if the EEG activity
accounted for by the component was stimulus-locked,
response-locked, or non-phase-locked (see Results).

RESULTS

ERP images

ERP images can be used to visualize variability in
the amplitudes and latencies of event-evoked re-
sponses, either by visualizing single-channel EEG ep-
ochs themselves, or by visualizing the single-trial ac-
tivations of components of the data. An example,
shown in Figure 2 (left), plots 645 single-trial ERP
epochs recorded at the central parietal site Pz from a
control subject and time-locked to onsets of target
stimuli (left vertical line). Each colored horizontal
trace represents a 1-s single-trial ERP record whose
potential variations are color-coded (see color bar at
right). The jagged black vertical line shows the sub-
ject’s response latency in each trial. Note the trial-to-
trial fluctuations in both ERP latency and reaction
time. The average of these trials and the median re-
sponse time (RT) are plotted below the ERP image.
Next, the same single trials were sorted in order of
increasing subject RT and plotted both before (middle)
and after (right) smoothing with a 20-trial rectangular
moving average.

Note (Fig. 2, right) that in nearly all trials the early
features (P1, N1) are time-locked to stimulus onset
(i.e., they are stimulus-locked), whereas the later pos-

itive “P3” feature follows the response in all but the
longest-RT trials (i.e., it is mainly response-locked), a
fact not evident in the ERP trial average (bottom).

An ERP image allows direct visualization of single
event-related EEG trials and their contributions to the
averaged ERP. An ERP image also makes visible rela-
tionships between subject behavior and amplitudes/
latencies of individual event-related responses, and
reveals several problems with conventional response
averaging. First, few if any trials in these data had a
time course that closely resembled the averaged ERP
waveform (i.e., the bottom traces). Second, later ERP
components systematically time-locked to subject re-
sponses were temporally smeared in the stimulus-
locked average, making the averaged ERP an impre-
cise representative of the underlying event-related
response processes. Third, the temporal relationship
between the time-varying events, such as RT and the
“P3” peak were confused in the ERP average. For this
subject, the average response (shown in the bottom
traces) gives the impression that the onset of the pos-
itive (red) “P3” preceded the median RT (vertical lines
crossing the ERP traces) by about 80 ms, whereas the
ERP images (top) clearly show that, in single trials, the
“P3” onset actually systematically followed RT.

The ERP image can be used to display single-trial
raw data and their independent component activa-
tions and to characterize the nature of independent
components (see Fig. 5).

Results of ICA decomposition

ERP images of the independent components of the
target responses single-trial data displayed a variety
of features with distinct relations to task events. Be-
cause of space constraints, we illustrate these features
by showing data from one 30-year-old male normal
control subject and two (19- and 32-year-old) high-
functioning male subjects with autism, although we
obtained similar results in all 50 cases.

Figure 3 shows the scalp maps and power spectra of
the 31 independent components derived from 641 tar-
get response epochs from a 32-year-old autistic sub-
ject. Several of these components can be assigned to
different component types using the procedure de-
scribed in Methods. Some components clearly cap-
tured a category of non-time locked non-brain activity
such as blinks (#1), eye-movements (#9), or muscle
artifacts (#14). Many accounted for portions of rhyth-
mic activity (e.g., alpha #7, 8, 17, etc.). Note that some
component maps were bilaterally symmetric (e.g., #24
and 29). The nature of other components was not clear
from their scalp topographies and spectra (see Fig. 5).
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These component types are discussed separately be-
low. The mean variance of the projections of each of
the 31 independent components across the scalp elec-
trodes is shown in Figure 3 (bottom right).

Removing blink and eye-movement artifacts

Figure 4 shows an example of ICA-based artifact
removal. In this example, ICA was applied to target
responses collected from a 19 year-old autistic subject
performing the visual spatial selective attention exper-
iment. Although the subject was instructed to fixate
the central cross during each 72-sec block, he tended to
blink or move his eyes slightly toward target stimuli
presented at peripheral locations. ICA successfully
isolated blink artifacts to a single independent com-
ponent (Fig. 4A) whose contributions could be re-
moved from the EEG records by subtracting the com-
ponent projection from the data [Jung et al., 1998a,
1998b, 2000a, 2000b]. A second ICA component ac-
counted for the small horizontal eye movements
(Fig. 4B).

A standard approach to ERP artifact rejection is to
discard eye-contaminated trials containing maximal

potentials exceeding some selected value (e.g., 70 mV)
at periocular sites. For this data set, this procedure
rejected 90 of 321 or 28% trials of the subject’s data. For
the data set collected from one of the lesion subjects,
the same procedure would have rejected over 60% of
trials. Figure 4C shows the ERP averages of the rela-
tively uncontaminated target trials (solid traces) and
the heavily contaminated target trials (faint traces)
that would have been rejected by this method. Note
that the averages of these two groups of trials differed
most at frontal electrodes. Figure 4D shows averages
of the same uncontaminated (solid traces) and con-
taminated (faint traces) trials after the ICA compo-

Figure 2.
ERP images of single-trial target response data from a visual
selective attention experiment. (Left) Single-trial ERPs recorded at
a parietal electrode (Pz) from the control subject and time-locked
to onsets of visual target stimuli (left thin vertical line) with
superimposed subject response times (RT) (thick black line). (Mid-
dle) The same 645 single trials, sorted (bottom to top) in order of
increasing RT. (Right) The same sorted trials smoothed with a
20-trial moving window advanced through the data in one-trial
steps to increase response signal-to-noise ratio and minimize the
influence of EEG activity not consistently time- and phase-locked
to experimental events. The average of all 645 trials, shown below
each ERP image, contains characteristic peaks (including the indi-
cated P1, N1, P2, and P3 peaks) whose systematic relationships to
behavioral RT are most clearly visualized in the right and central
images.

Figure 3.
The scalp maps and power spectra of the 31 independent com-
ponents derived from target response epochs from a 32-year-old
autistic subject. Blink and eye movement artifact components (IC1
and IC9) had a typical strong low frequency peak. Temporal
muscle artifact components (i.e., ICs 14, 22, 27, and 29) had
characteristic focal optima at temporal sites and power plateaus at
20 Hz and higher. Some components captured oscillatory activity
(i.e., ICs 7, 8, 17, etc.). Some components included features that
systematically time- and phase-locked to stimulus onsets or sub-
ject responses (Fig. 5).
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nents accounting for the artifacts were identified and
removed, and the remaining components projected
back onto the scalp electrodes. The two ICA-corrected
averages were almost completely coincident, showing
that ICA-based artifact removal did not change the
neural signals that were not contaminated. Note that
the “ICA-corrected” averages of these two trial groups
are remarkably similar to the average of the uncon-
taminated trials before artifact removal (Fig. 4C, solid
trace). This implies that the corrected recordings con-
tained only event-related neural activity and were free
of artifacts arising from blinks or eye movements.

Similar ICA-based artifact removal was applied to
single-trial target-response records from all 28 normal,
ten autistic, and 12 brain lesion subjects in this exper-
iment. Artifact-removal results for remaining 49 sub-
jects were at least as impressive as in Figure 4. More

examples and supporting evidence can be found in
Jung et al. [2000b] and online at http://www.cnl.
salk.edu/;jung/ERPartifact.html.

Stimulus-locked activity

Single-trial EEG records include ongoing EEG that
are not time-locked and/or phase-locked to experi-
mental events. Applied to the single-trial EEG records,
ICA identified stimulus-locked, response-locked, and
non-phase locked response features in mostly separate
classes of independent components. The numbers of
components in each class varied between subjects.
This is illustrated further by the ICA decomposition of
the EEG data from a 32-year-old autistic subject, the
same subject shown in Figure 3. After removal of two
ICA components (IC1 and IC9) accounting for blinks
and eye movements (similar to those in Fig. 4), 29 ICA
components remained.

Figure 5A (middle left) shows single-trial activa-
tions of two of nine ICA components accounting for
portions of the stimulus-locked response activity.
Note that both the response latencies and active du-
rations of the early stimulus-locked P1 and N1 com-
ponents were stable and time-locked to stimulus on-
sets in nearly all trials. Each of these nine independent
components had distinct time courses. For example,
the peak latency (156 msec) of the early N1-latency
component extracted by IC17 (middle) led that of the
late N1 activity (195 ms) accounted for by IC7 (left).
The scalp maps of the two components were distinct,
although overlapping and non-orthogonal (r 5 0.09).
The maps of these two components resemble the N1a
and N1b components separated by ICA from the set of
normal-subject grand mean ERPs in these experiments
[Makeig et al., 1999b]. Details of the early single-trial
visual response components will be reported else-
where.

The single-trial activations of nine stimulus-locked
components were projected back onto the scalp chan-
nels and then summed to estimate their contributions
to the averaged response. Figure 5A (right) shows the
summed projections, at the left posterior site PO3,
accounting for nearly all of the P1 and N1 peaks in the
raw response waveform but for only part of the P2
and N2 response peaks. The scalp map of the summed
projections at the N1 peak (195 msec) is shown below
the ERP image. The ICA separation of P2/N2 activity
into both stimulus-locked and response-locked com-
ponents may explain the often-noted difficulty in char-
acterizing the nature and sources of these intermediate
response peaks.

Figure 4.
Elimination of eye-movement artifacts from ERP data. (A) Scalp
topography and five consecutive 1-sec target response epochs
showing the time course of activation of an ICA component
accounting for blink artifacts. This component was separated by
ICA from 321 target-response trials recorded from an adult au-
tistic subject in the visual selective attention experiment. (B) The
scalp topography of a second eye-movement component and its
average activation time course in response to target stimuli pre-
sented at the five different attended locations. (C) Averages of
(N 5 231) relatively uncontaminated (solid traces) and (N 5 90)
heavily contaminated (faint traces) single-trial target response ep-
ochs from a normal control subject. (D) Averages of ICA-cor-
rected ERPs for the same two trial subgroups overplotted on the
average of uncorrected uncontaminated trials.
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Response-locked activity

Figure 5B (left, middle) shows activations of two of
the four ICA components accounting primarily for
response-locked activity. The activations of these com-
ponents had distinct relationships to subject re-
sponses. Peak latencies of the response-locked activity
covaried with response time, while their active dura-
tions were stable. Figure 5B (right) shows the summed
projections of these four ICA components at left pari-
etal-occipital site PO3, and the scalp map of their
summed projections at the “P3” peak (453 msec) in
their response average. Note that response latency
differences produced a pronounced temporal smear-
ing of the P3 peak in the averaged ERP (middle right),
yielding an inaccurate average of event-related brain
responses to target stimuli. Peaks in averaged ERPs
have been the primary features used to study brain
dynamics surrounding experimental events. Inaccura-
cies of ERP averaging might lead to mistaken conclu-
sions based on inaccurate peak amplitudes and laten-
cies. Below we describe an effective method for
realigning these single-trial event-related activities
while preventing temporal smearing.

Spontaneous EEG activity

For the same subject, the remaining non-phase
locked background EEG activity was accounted for by
16 components, several of which were quite small. The
single-trial activations of two of these components and
the summed projection of all 16 components at site
PO3 are shown in Figure 5C. As expected, because of
phase cancellation induced by averaging 641 trials, the
summed projections of ICA components accounting

for non-phase locked background EEG activity con-
tributed very little to the ERP average (Fig. 5C, bottom
right trace). The scalp map of their summed projec-
tions at the (453 ms) “P3” peak latency (bottom right)
does not resemble that of the “P3” response in the
averaged ERPs (Fig. 5B, right).

Realigning single-trial ERPs

Figure 6A (top left) shows the artifact-corrected sin-
gle-trial ERP epochs at left posterior site PO3 for the
same subject (i.e., the sum of the data shown in the
rightmost ERP-image panels of Fig. 5). The latency of
the N1 peak (dotted line) was stable across trials,
whereas response latency differences in long- and
short-RT trials produced a pronounced temporal
smearing of the P3 peak in the averaged ERP (bottom
trace), giving an inaccurate representation of event-
related brain response to target stimuli. Realigning the
single-trial ERP epochs to the median reaction time
(top right) sharpened the averaged P3, but unfortu-
nately smeared out the early stimulus-locked activity
across trials (dotted line), thus removing the early
(100–300 msec) response peaks from the averaged
response (bottom trace). However, because ICA sepa-
rated much of the stimulus-locked, response-locked
and non-phase locked background activity into differ-
ent subsets of independent components (Fig. 6B), we
could first realign the time courses of the components
accounting for response-locked ERP features (middle)
to the median reaction time, (Fig. 6C, middle) and then
sum them with the stimulus-aligned projections of
time courses of stimulus-locked early components (P1,
N1, etc.) (Fig. 6B, left), forming artifact- and latency-
corrected data that preserved the early stimulus-
locked response (P1, N1) while sharpening the re-
sponse-locked P3 (Fig. 6C, bottom right). In this
record, temporal smearing in the averaged ERP aris-
ing from performance fluctuations is minimized with-
out smearing or eliminating the stimulus-locked com-
ponents (dotted line) (compare 6A, top right, and 6C,
bottom right).

Classifying subtypes of endogenous ERPs

By separating event-related responses components
from background EEG processes and EEG artifacts,
ICA also allowed differences in single-trial responses
to be more closely examined. This is illustrated by
characterizing the relatively artifact-free spatiotempo-
ral P3 response extracted by ICA in each single trial
response from the same autistic subject (Fig. 7). First,
the time courses of the four response-locked compo-

Figure 5.
Three categories of ICA components of single-trial ERP data.
(Left) RT-sorted ERP images of selected ICA component activa-
tions and scalp maps, and (right) their summed projections onto a
left posterior scalp site (PO3) of the autistic subject. Smoothing
width in all images: 30 trials. (A, left) Single-trial activations of two
of nine independent components accounting for stimulus-locked
activity. Mean activation shown below (relative units). (Right)
Summed projection, at left posterior site PO3, of all nine inde-
pendent components accounting for stimulus-locked activity, with
the ERP average at this site shown below (units: mV). (B, middle
left) Two of four independent components accounting for re-
sponse-locked activity. (Right) Summed projection at PO3 of all
four response-locked components. (C, middle left) Two of 16
independent components accounting for non-phase locked activ-
ity. (Right) Summed projection at PO3 of all 16 spontaneously
active components.
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nents accounting for the P3 were realigned to the
median response time and then the response-aligned
activations were projected back to site PO3 (Fig. 7A,
left). By using the average of the response-aligned P3
waveform (bottom trace) as a template for correlating
with the waveform of each single-trial projection (left),
two trial subsets were identified comprised of rela-
tively “consistent” and “inconsistent” P3 responses,
respectively. Figure 7A (middle) shows the ERP image
of 515 response-aligned consistent P3 response trials
(80% of the trials), in which the P3 component activa-

Figure 6.
Realignment of the ERPs to compensate for variable reaction
times. (A) Artifact-corrected, RT-sorted single-trial ERP data for
the same autistic subject at site PO3 time-locked, respectively, to
stimulus onsets (left) and to subject responses (right). Note that
the early ERP features (P1, N1, etc.) are out-of-phase in the
response-locked trials (right) and therefore do not appear in the
response-locked average (bottom right trace). (B) The single-trial
data at PO3 were decomposed by ICA into summed projections
of components accounting for (left) stimulus-locked, (center) re-
sponse-locked, and (right) non-phase-locked background EEG ac-
tivity. (C) Projections of the response-locked components to site
PO3 were aligned to median reaction time (355 ms) and summed
with the projections to PO3 of stimulus-locked components (B,
left), forming an enhanced ICA-aligned ERP (bottom right trace).

Figure 7.
Analysis of variability in the P3 component in single trial ERPs. (A)
Summed projections of the four ICA components to left-posterior
site PO3 accounting for response-locked P3 activity (left) could be
separated into 515 consistent-P3 trials (middle), whose activations
resembled those of the averaged P3-component activation (r 5 0.3),
and 126 inconsistent-P3 trials (right) (r , 0.3) whose average (bot-
tom right trace) did not resemble the averages of the consistent trials
(middle trace) or of all the trials (right trace). To better illustrate
intertrial differences, the ERP images are unsmoothed. (B) Distribu-
tions of latency shifts yielding maximal correlations between the P3
template (A, bottom left trace) and each response-aligned trial, for
(left) all trials, (middle) the 515 consistent-P3 trials, and (right) the 126
inconsistent-P3 trials. Note that P3 waveforms of most of trials were
consistently time-locked to the subject’s responses, as evidenced by a
tight concentration near zero-time shift in the left and center histo-
grams. However, the maximally correlated shift times for the incon-
sistent trials (right) had no central tendency. (C) ERP images of
projected stimulus-locked activity at site PO3 for (left) all, (middle)
consistent, and (right) inconsistent-P3 trials appear similar. (D) Aver-
ages of (blue) consistent-P3 and (red) inconsistent-P3 trials. (Left)
Summed projected stimulus-locked components produce identical
early P1/N1 response peaks at site PO3. (Right) Summed projected
response-locked components at site PO3 produce dramatically dif-
ferent responses for the two trial subsets.
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tion resembled the average time course (r 5 0.3). In the
remaining 126 inconsistent P3 response trials (20%)
(right), the response morphology differed markedly
(r , 0.3) from the mean response.

To test the response-locking of the activity isolated
by these components, we cross-correlated each trial
(i.e., each horizontal trace in Fig. 7A, left) with the P3
template (Fig. 7A, bottom left trace). Fig. 7B shows
histograms of the latency shifts giving maximal corre-
lations for all trials (left), consistent response trials
(middle), and inconsistent response trials (right). Note
that most of the consistent response trials were time-
aligned to the template, as evidenced by a tight con-
centration near zero in the histogram (middle), imply-
ing that their peak latency consistently followed the
subject response latency by about 100 msec. Note also
that the outliers in the histogram of latency shifts for
all trials (left vs. middle) were mainly contributed by
the inconsistent response trials (Fig. 7B, right), even
though the zero-lag waveform correlation rather than
the size of the time shift was used as the criterion for
classifying trials as consistent or inconsistent.

An interesting and related question was whether
stimulus-locked activity differed between consistent
and inconsistent response trials. Figure 7C shows ERP
images of summed stimulus-locked component activ-
ity projected to site PO3 in all trials (left), consistent
response trials (middle), and inconsistent response tri-
als (right). Stimulus-locked activity (Fig. 7D, left) was
similar in consistent and inconsistent trial subsets.
However, as expected, the averages for the same two
trial subsets of the summed activity of the response-
locked components differed strongly between 300
msec and 800 msec (Fig. 7D, right).

Constructing an optimized ERP average

Many studies have attempted to use peak measures
of LPC or P3 waveforms to test a wide range of clinical
and developmental hypotheses. By applying artifact
removal, extraction of event-related activity, response
realignment, and inconsistent P3 response trial prun-
ing to the target-response epochs from the autistic
subject, we derived an optimized target P3 (Fig. 8,
solid traces). Note that, compared to the raw averaged
ERP (dashed traces), the optimal P3 peak at central-
parietal site Pz had 50% larger amplitude and 20 msec
shorter latency (plot insert), with a shorter active du-
ration than the raw averaged ERP. Similar differences
are apparent in Figure 8 at all central and posterior
channels.

Event-related oscillatory EEG activity

ICA applied to multichannel single-trial EEG
records can also separate multiple, spatially overlap-
ping oscillatory components, even when they have
maximal energy within the same frequency band
[Makeig et al., 1996]. For example, Figure 9 plots the
ERP images and scalp topographies of activations of
two ICA components accounting for alpha-band (8–12
Hz) activity in target-response epochs from a 30-year-
old normal control subject. Note that alpha activity in
the activation average of the central occipital compo-
nent (left, bottom trace and scalp map) seemed aug-
mented in the averaged response following stimu-
lation, whereas alpha activity in the right-central
component (middle and scalp map) was clearly re-
duced or blocked at or before the subject response
(black trace). The peak alpha frequencies in the single-
trial activations of the two components were near
identical (circa 11 Hz), yet because of time-varying
differences in amplitude and phase their activations
were nearly uncorrelated (r 5 0.002). The power spec-
trum (not shown) of the second component contained
a second peak near 20 Hz, whereas the spectrum of the
first component did not. The spectra, scalp maps,
equivalent dipole source locations (not shown), and

Figure 8.
Effects of artifact and latency correction on averaged ERPs from an
autistic subject. Average of all 641 single target trials from the
autistic subject, before (dashed traces) and after (solid traces)
artifact-removal, latency-realignment, and elimination of 126 in-
consistent-P3 trials from the average (see Results). The plot insert
(top right) shows P3 peak latency and amplitude at site Pz before
and after correction. Note the larger, earlier and narrower P3
peak in the corrected average at central and posterior channels.
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activity blocking following the button press are all
compatible with the behavior of the EEG mu rhythm
associated with the motor system [Kuhlman, 1978;
Makeig et al., 2000b; submitted]. When the ICA com-
ponent filter for the right mu component was applied
to data from a second session in which the same
subject was instructed to attend to target stimuli with-
out making a button press (right panel), this compo-
nent was again recovered but its rhythmic alpha-band
activity was not blocked.

Conversely, when ICA was trained on target re-
sponse trials from the no-response session, it derived
a spatial filter nearly identical to the right mu compo-
nent (scalp maps r 5 0.94). When the new spatial filter
was applied to the trials from the motor-response
session, the component’s alpha activity again was
blocked following the response, even though the new
component was derived from the non-motor response
session in which the activity was not blocked. This
result indicates that ICA can extract the activity of
distinct, spatially distributed alpha-band activities
that may be differently affected (or unaffected) by
stimulus presentation and/or subject responding. De-
tails of these and other oscillatory components will
appear elsewhere [Makeig et al., submitted].

Component stability

Component scalp maps and activation spectra of
713 (31 3 23) independent components from 23 nor-
mal control subjects (aged between 16 and 80, mean:
44.8, 14 males and nine females) were clustered using
a symmetrical Mahalanobis distance measure (see
Methods and Appendix). Of the resulting clusters,
several accounted for eye blinks (Fig. 10A, left), lateral
eye movements (middle), and temporal muscle activ-
ity (right), as judged by their scalp maps, mean spec-
tra, and activity patterns in single trials. These artifac-
tual components were separated from nearly every
subject’s data.

The largest two clusters not accounting for artifacts
are shown in Figure 10B and C. Figure 10B shows the
mean map and power spectrum of a large cluster of
central parietal components. In this cluster, the com-
ponent activations accounted for a portion of the ver-
tex-positive “P3”. Twenty-three components from 17
subjects were grouped into this cluster. The power
spectra of the component cluster in Figure 10C con-
tained peaks near 11 and 20 Hz. In all 14 components
from ten subjects contributing to this cluster, the
11-Hz activity was significantly blocked following
subject responses as in Figure 9 (middle), strongly
suggesting these represented mu activity [Kuhlman,

1978; Makeig et al., submitted]. Scalp maps of individ-
ual left mu components in this cluster strongly resem-
bled the (left) cluster mean map. Nine subjects con-
tributed one component to this cluster, three subjects
contributed two components, and one subject contrib-
uted three. Table I summarizes largest component
clusters, number of components in the each cluster,
and the number of contributing subjects out of a total
of 23 subjects.

DISCUSSION

In this study, ICA was applied to single-trial target-
response records from 22 neurological patients and 28
adult control subjects in a visual selective attention
experiment, producing for each subject 31 maximally
independent EEG components having a variety of dis-
tinct relations to task events. Some components in-
cluded activity time- and phase-locked to stimulus
onsets thereby accounting for a portion of the stimu-
lus-locked ERP. Others included activity time- and
phase-locked to subject responses, thereby accounting
for a portion of the response-locked ERP. Still other
components accounted for blinks, eye movements,
muscle noise, and EEG activity not locked either to
stimuli or responses.

Our confidence in the usefulness of ICA decompo-
sition of EEG signals is strengthened by these results:
first, by its apparently clean separation of eye blink
and eye movement artifacts and, second, by the phys-
iologically plausible scalp maps of all but the smallest
ICA components. Scalp maps of larger components
tended to have few spatial optima, consistent with
relatively simple source generators. Elsewhere, we
have presented further evidence for the robustness of
ICA decomposition applied to ERP averages [Makeig
et al., 1997, 1999a, 1999b, 2000c].

Artifactual components

ICA-based artifact removal can effectively detect
and separate contaminations arising from a wide va-
riety of artifactual sources in EEG records without
sacrificing neural signals recorded at sites most af-
fected by the artifacts. This method also can preserve
most or all of the recorded trials for analysis, even
when few if any of the raw trials are artifact-free.

Researchers have recognized the importance of sin-
gle trials as reflecting dynamic operations such as
orienting, habituation, or associative learning. How-
ever, they typically have had to sacrifice some or most
of the information contained in single trials to increase
the signal-to-noise ratio by averaging single trials
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across subjects [Kenemans et al., 1989] or across time
intervals [Courchesne et al., 1978]. Making use of in-
formation about single trials while removing artifacts
with ICA may help researchers to take fuller advan-
tage of what until now has been an only partially
realized strength of ERP paradigms—the ability to
examine systematic msec-scale variations from trial to
trial within subjects.

Exogenous and endogenous components

ERP researchers have traditionally distinguished
between shorter-latency exogenous components,
whose amplitudes and/or latencies depend directly
on physical characteristics of the evoking stimulus,
and longer-latency endogenous components whose
size and latency depend on the cognitive relevance of
the stimulus [Goodin et al., 1986]. ERP images both of
single-trial raw data and of its independent compo-
nent activations (Fig. 5) have revealed that in our
experiments the later (“endogenous”) P3 components
were clearly time-locked to the motor responses,

whereas early (“exogenous”) P1, N1 components were
reliably time-locked to stimulus onsets. ICA decom-
position makes possible the study of properties of
exogenous and endogenous response activities in sin-
gle trials. The independence of stimulus-locked and
response-locked activities in consistent and inconsis-

Figure 9.
Non-phase locked ICA components with and without event-re-
lated dynamics. (Top left and middle) ERP images of single-trial
activations of two ICA components accounting for alpha activity in
single trials from a normal control subject, and their scalp topog-
raphies. Images smoothed with a 30-trial moving window. The
separate alpha activities accounted for by these components were
respectively enhanced (left) or blocked (middle) by subject re-
sponses. When the spatial filter for the second alpha component
(middle) was applied to single target trials from another session in
which the same subject was asked only to “mentally note,” but not
physically respond to targets (right), this component’s alpha activ-
ity was not blocked.

Figure 10.
Between-subject component stability. (A) Three stable compo-
nent clusters accounting for blinks (N 5 27/23 Ss), eye movements
(N 5 19/16 Ss) and left temporal muscle activity (N 5 19/16 Ss).
These components were near-perfectly replicated across all sub-
jects. (B) The largest nonartifactual component cluster (N 5 23/17
Ss). (Leftmost map) Mean component map. (Bottom) Mean power
spectra (red) 6 SD. The components account for much of the
LPC. Individual maps in this cluster resembled the cluster mean
map (leftmost). (C) Left mu rhythm component cluster (N 5 14 /
10 Ss). Note the spectral peaks near 11 and 20 Hz. The activations
of these components were significantly reduced following the
response period between 500 to 1000 msec after stimulus onset.
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tent P3 trials (Fig. 7) demonstrates that different fac-
tors modulate the amplitudes of these two component
classes. The ability of ICA to study relationships be-
tween exogenous and endogenous activity in each
trial could open new basic and clinical research op-
portunities.

Response latency variability

Using ERP images to visualize component activa-
tions revealed response information not obtainable
from response averages. In our data, response laten-
cies and active durations of the early stimulus-locked
P1 and N1 peaks were stable in nearly all trials,
whereas the later LPC or P3 peak covaried with re-
sponse time (i.e., it was response-locked). ICA sepa-
rated stimulus- and response-locked event-related
activity into different components on the basis of tem-
poral independence and differences in spatial distri-
bution. ICA allowed the time courses of response-
locked components to be realigned, preventing
temporal smearing of late response activity in the
average.

Examining single-trial activations of response-
locked independent components made it easy to clas-
sify subtypes of ERP trials by reducing confounds
from large artifacts and nontask-related background
EEG activity. Although P3 response amplitudes and
wave shapes varied widely from trial to trial, latency
variability in late positive complex of responses to
visual targets could be explained nearly entirely by a
small set of independent components that were con-
sistently time-locked to the subject’s motor responses.
Reasons for the trial-to-trial performance differences
might arise from intertrial differences in attention or
arousal, or be linked to differences in the stimulus
sequences preceding target presentation. Alterna-

tively, they might arise from the subject using differ-
ent strategies to perform the same task, even within
the same session. Using the methods presented here,
these and other possibilities can now be studied in
detail.

Optimal response averaging

The ICA-adjusted ERP averages derived for each
subject represented time- and phase-locked event-
related brain activity more faithfully than either the
stimulus- or response-aligned averaged ERPs because:
(1) the trials were relatively artifact-free; (2) response-
locked features of the ERP were aligned to the median
subject response time, thereby minimizing temporal
smearing included by stimulus-aligned averaging; (3)
approximately 20% of target response trials contained
little or no P3 activity that were not included in the
average. When peak measures applied to ERP aver-
ages are used to index response dynamics associated
with experimental manipulations, ICA optimization
can remove pervasive artifacts, realign the response-
locked activity to prevent temporal smearing, and
give information useful for pruning deviant trials,
thereby more faithfully representing the average re-
sponses of interest. Such enhanced averaging has long
been a goal of ERP signal processing efforts (e.g.,
Wiener-filtered ERPs) [Woestenburg et al., 1983b].

Background EEG components

The summed projections of ICA components ac-
counting for non-phase locked (or “background”)
EEG activity contributed little to the averaged ERP.
However, the ICA decomposition reveals the brain
dynamics of spatiotemporally overlapping compo-
nents of spontaneous brain activity that were distinc-

TABLE I. Major component clusters

Eye Temporal
muscle Posterior a mu

Central
occipital

aActivity type Blink
Eye

movement Left Right Left Right “P3” Left Right

Number of components 27 19 19 11 13 13 23 14 10 12
Number of contributing

subjects
23/23
100%

16/23
70%

16/23
70%

9/23
39%

10/23
43%

12/23
52%

17/23
74%

10/23
43%

8/23
35%

9/23
39%

The results of component clustering. The activity accounted for by the 10 largest component clusters, numbers of individual components
participated in the each cluster, and numbers of subjects having components in the clusters are shown here. The mean scale maps of three
largest artifactual components clusters and two largest non-artifactual, P3b and left mu, are shown in Figure 10.
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tively affected by experimental events. ICA identified
multiple oscillatory EEG components with spectral
peaks at a range of frequencies. At alpha band fre-
quencies (8–12 Hz), multiple independent compo-
nents with differing scalp topographies were found in
single-trial responses. The time courses of activation of
these components proved to be consistently and dis-
tinctively affected by task events. Observed event-
related modulations in these (and other) data included
event-related amplitude augmentation or blocking
time locked to target-stimulus onsets or to subject
responses.

Spontaneous EEG activity has been analyzed pri-
marily in the frequency domain, most often using
measures of power in standardized frequency bands
such as theta (4–7 Hz) and alpha (7–12 Hz). Event-
related depressions in spectral power in the alpha
band have been studied for nearly 30 years as “event-
related desynchronizations” (ERDs) [Pfurtscheller et
al., 1979]. More recently, full-spectrum event-related
changes in spectral power, termed “event-related
spectral perturbations” (ERSPs) have been demon-
strated [Makeig, 1993]. Event-related changes in phase
coherence between signals collected at pairs of scalp
channels have also been reported [Rappelsberger et
al., 1994; Sarnthein et al., 1998; Walter, 1968]. How-
ever, both power and coherence studies use as their
unit of analysis relatively narrow frequency bands at
single scalp channels or channel pairs, even though
most neural generators of oscillatory activity project
widely across the scalp, making each scalp channel
report the sum of multiple neural sources. Also, these
time-frequency methods rely on averaging across
large numbers of trials, and are thereby also subject to
contamination by artifacts.

ICA, on the other hand, identifies spatially-overlap-
ping patterns of coherent activity over the entire scalp
and frequency pass band rather than focusing on ac-
tivity at single frequencies in single scalp channels or
channel pairs. Unlike ERP averaging, which acts on
oscillatory activity like a comb-filter, passing only ac-
tivity both time- and phase-locked to experimental
events, ICA allows phase and timing of oscillatory
activity to vary independently within identified
sources. Because ICA segregates different spatial pat-
terns of oscillatory activity into different components,
it facilitates the study of event-related modulations,
compared to studying these modulations at single
scalp electrodes, which inevitably record the activity
of multiple functional brain sources generated within
a large brain area. ICA also separates oscillatory com-
ponents from overlapping artifactual activity.

Component stability

We previously reported the component stability of
ICA decomposition of single-trial 1-sec EEG epochs on
two different levels: the replicability of components
obtained from repeated ICA training on the same data
set, and our previous results [Jung et al., 2000a;
Makeig et al., 1997, 1999a]. These results showed that
ICA decomposition is relatively insensitive to the ex-
act choice of learning rate or batch size. In repeated
trainings with the data delivered to the training algo-
rithm in different random time orders, independent
components with large projections were unchanged,
though the smallest components typically varied.

Within-subject spatiotemporal stability of indepen-
dent components was tested by applying moving-
window ICA to sets of overlapping event-related sub-
epochs of the same single-trial recordings used in this
study [Makeig et al., 2000a, submitted]. Our results
showed that ICA decomposition of multichannel sin-
gle-trial event-related EEG data could give stable and
reproducible information about the spatiotemporal
structure and dynamics of the EEG before, during, and
after experimental events. In addition, component
clusters produced by single ICA decompositions of
sets of whole target-stimulus epochs strongly resem-
bled those produced by moving-window decomposi-
tions.

Here we investigated the between-subject stability
of independent components of the single-trial 1-sec
EEG epochs by applying a component clustering anal-
ysis (component-matching approach based on the
component scalp maps and power spectra of compo-
nent activations) of 713 components derived from 23
normal controls. We found that clusters accounting for
eye blinks, lateral eye movement, and temporal mus-
cle activities were detected by ICA in almost all sub-
jects. In general, clusters accounting for event-related
activity including early stimulus-locked activity, late
response-locked activity (P3), event-modulated mu,
and alpha band activities were largely replicated in
many subjects, whereas components accounting for
non-phase locked EEG activities varied across sub-
jects.

Differences in single-trial ERPs between normal
controls and neurological patients

The difference in single-trial ERPs between the nor-
mal controls and neurological patients can be investi-
gated using ERP image plots. Although we do not yet
have enough subjects to generalize across these two
patient populations, preliminary results are quite in-
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teresting. Townsend et al. [2001] found that single-trial
variability of average “P3” amplitude at Pz was larger
for control subjects than for autism subjects. Control
subjects generated “P3” responses that were greater
than 5 mV on approximately two-thirds of the single
trials, whereas autism subjects generated responses
that large on only one-third of the single trials. In a
study of comparing ERPs in normal patients and cer-
ebellar lesion patients, Westerfield et al [unpublished]
showed that although the control subjects had robust
“P3” activity time locked to button press, lesion sub-
jects had weaker, sporadic poststimulus positive ac-
tivity. Further studies on subjects from these subject
groups will be reported separately.

ICA limitations

Although ICA seems to be generally useful for EEG
analysis, it also has some inherent limitations: First,
ICA can decompose at most N sources from data
collected at N scalp electrodes. Usually, the effective
number of statistically-independent signals contribut-
ing to the scalp EEG is unknown, and it is likely that
observed brain activity arises from more physically
separable effective sources than the available number
of EEG electrodes. To explore the effects of a larger
number of sources on the results of the ICA decom-
position of a limited number of available channels, we
ran a number of numerical simulations in which se-
lected signals recorded from the cortex of an epileptic
patient during preparation for operation for epilepsy
were projected onto simulated scalp electrodes using a
three-shell spherical model [Makeig et al., 2000c]. We
used electrocorticographic data in these simulations as
a plausible best approximation to the temporal dy-
namics of the unknown EEG brain generators.

Results confirmed that the ICA algorithm can accu-
rately identify the time courses of activation and the
scalp topographies of relatively large and temporally-
independent sources from simulated scalp recordings,
even in the presence of a large number of simulated
low-level source activities. In many decompositions,
the largest ICA components were highly stable, with
similar topographies and time courses across subjects,
whereas the smallest ICA components appeared noisy
(i.e., were variable between subjects and repeated
trainings and/or had complicated scalp topographies,
or else accounted predominantly for artifacts in a few
“outlier” epochs). Thus, independent components
making small contributions to the scalp data and hav-
ing complex scalp maps, may represent mixtures of
many small brain sources, and should be interpreted
cautiously.

Second, the assumption of temporal independence
used by ICA cannot be satisfied when the training
data set is too small, or when separate topographically
distinguishable phenomena nearly always co-occur in
the data. In the latter case, simulations show that ICA
may derive single components accounting for the co-
occurring phenomena, along with additional compo-
nents accounting for their brief periods of separate
activation. Such confounds imply that behavioral or
other experimental evidence must be obtained before
concluding that ICA components with spatiotempo-
rally overlapping projections are functionally distinct.
This report illustrates two such criteria: independent
components may be considered functionally distinct
when they exhibit distinct reactivities to experimental
events (Fig. 9), or when their activations correspond to
otherwise observable signal sources (Fig. 4).

Third, ICA assumes that physical sources of artifacts
and cerebral activity are spatially fixed over time. In
general, there is no reason to believe that cerebral and
artifactual sources in the spontaneous EEG might not
move over time. Examples of spatially fluid sources
may include spreading sleep spindles [McKeown et
al., 1998], as suggested by neurophysiological model-
ing [Bazhenov et al., unpublished]. However in our
data, the relatively small numbers of components in
the stimulus-locked, response-locked, and non-phase
locked categories, each accounting for activity occur-
ring across sets of 500 or more 1-sec trials, suggests
that the ERP features of our data were primarily sta-
tionary, consistent with repeated observations in func-
tional brain imaging experiments that discrete and
spatially restricted areas of cortex are activated during
task performance [Friston et al., 1998].

CONCLUSIONS

The study of single-trial event-related brain re-
sponses has been frustrated for decades by problems
of dealing simultaneously with eye and muscle arti-
facts, spontaneous EEG sources, and spatiotemporally
overlapping response components. This paper dem-
onstrates promising analytical and visualization meth-
ods for multichannel single-trial EEG recordings that
may overcome these problems.

The ERP image (or, applied to MEG data, the event-
related field or “ERF image”) makes visible systematic
relations between experimental events and single-trial
EEG (or MEG) records, and their ERP (ERF) averages.
ERP images can also be used to display relationships
between phase, amplitude, and timing of event-re-
lated EEG components that are time-locked either to
stimulus onsets, to subject responses, or to other pa-

r Jung et al. r

r 182 r



rameters. Applied to these data, they revealed that
latency variability in visual target-evoked responses is
predominantly accounted for by response-locked ac-
tivity. The ERP image can be used to display single-
trial raw data (Fig. 2) and their independent compo-
nent activations (Fig. 5).

Independent component analysis of single-trial ERP
data allows blind separation of multichannel complex
EEG data into a sum of temporally independent and
spatially fixed components. Our results show that ICA
can separate artifactual, stimulus-locked, response-
locked, and non-event related background EEG activ-
ities into separate components, allowing: (1) removal
of pervasive artifacts of all types from single-trial EEG
records, making possible analysis of highly contami-
nated EEG records from clinical populations, (2) iden-
tification and segregation of stimulus- and response-
locked EEG components, (3) realignment of the time
courses of response-locked components to prevent
temporal smearing in the average, (4) classification of
response subtypes, and (5) separation of spatially-
overlapping EEG activities that may show a variety of
distinct relationships to task events.

Component-matching clustering analysis automati-
cally grouped components from 23 normal controls
having similar scalp maps and power spectra. The
results showed that components accounting for blink,
eye movements, temporal muscle activity, event-re-
lated activity, and event-modulated mu and alpha
activities were similar across subjects.

Better understanding of trial-to-trial changes in
brain responses may allow a better appreciation of the
limitations of normal human performance in repeti-
tive task environments, and may allow more detailed
study of changes in cognitive dynamics in brain-dam-
aged, diseased, or genetically abnormal individuals.
The proposed methods also allow the investigation of
the interaction between ERPs and ongoing EEG. The
analysis and visualization tools proposed in this study
seem to enhance the amount and quality of informa-
tion in event- or response-related brain signals that
can be extracted from ERP data, and so seem broadly
applicable to electrophysiological research on normal
and clinical populations.
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APPENDIX

Component clustering

Clustering Extraction of dominant scalp activity
maps from multiple subjects requires a method that
can cope with the expected large fraction of outlier
elements. These include two general classes of maps:
A map located near but not within a map cluster (an
outlier of the cluster), else a map situated far from any
cluster (an outlier of the map collection). To determine
cluster densities, a distance measure is required. In
statistical analysis, a frequently used measure is the
Mahalanobis distance [Bishop, 1995], which linearly
rotates the data by the data covariance matrix. The
process is analogous to pre-whitening of the data.
Unlike the Euclidian distance measure, the Mahalano-
bis distance increases sensitivity in directions of the
data space having high sample densities while allow-
ing more tolerance in sparse directions. Dense regions
may contain closely situated but distinct clusters that
simple Euclidean distance-based clustering techniques
would fail to separate.

Map signs have no meaning for oscillatory EEG
components. Hence, to perform clustering on maps

similar maps of opposite signs had to be jointly
clustered. This requirement dictated a modification
of the definition of the Mahalanobis distance (D)
[Enghoff, 1999, p. 26]. Theoretically, no upper
bound on the generated distances exists. To bound
distances, measurements were mapped by the trans-
formation Qij 5 [sign(D(xi,xj)) exp(2uD(xi,xj)u)] into
the range [0,1].

The inverse-distance matrix Q contained pairwise
measurements for all possible permutations of the
elements in the considered data set. After eliminating
the undefined diagonal elements of Q, clusters were
synthesized. The first clustering step determined the
element k whose corresponding column in Q had the
largest sum of inverse distances. Elements resembling
the kth element at inverse-distances above a desig-
nated threshold were jointly assigned to produce a
cluster. In the second step, the clustered elements
were rejected from the collection of unassigned ele-
ments together with a selection of outlier elements
located in the immediate vicinity of the cluster, desig-
nated by a second threshold. These steps were re-
peated until either a maximum number of clusters had
been found, all elements were clustered or rejected, or
subsequent matches fell below a significance thresh-
old. Thresholds used were determined by trial and
error to give the largest number of clusters and best
within-cluster similarity.
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