Motion Related Contrast in MRI

Eric Wong

PollEv.com/be278

Motion Encoding

Encoding M_{XY} for Motion: Phase Contrast

Phase from Motion:

Bipolar Gradient:

How	Big can m ₁ be?
For:	G=4G/cm
	$\delta = \Delta = 50 \text{ms}$

- π per 6µm
- VENC=velocity for $\phi=\pi$
- = $6\mu m/50ms$ =0.12mm/s

PollEv.com/be278

Phase Contrast MRA

- •One image with velocity encoding positive
- •One image with velocity encoding negative
- •Vector sum of gradients determines direction of encoding
- •Display phase difference between images
- •Phase difference subtracts out off-resonance and other phase effects

Phase Contrast MRA

Phase is proportional to velocity
Quantitate velocity from phase images and/or:
Construct angiograms by MIP of velocity maps

Bushberg: The Essential Physics of Medical Imaging, 2002.

MR Elastography

Muthupillai et al, Nature Medicine 2 (5) 1996

PollEv.com/be278

Diffusion Imaging

Diffusion

•Random walk •No net displacement -> No net phase shift •RMS displacement in time $dt \propto \sqrt{Ddt}$ •Convolution with Gaussian in image space •Multiplication by Gaussian in K-space

Total Attenuation: $S/S_0 = e^{-D\int k^2 dt} = e^{-bD}$

Pulse Sequence

where: $b \equiv \int k^2 dt$

Time of Flight MRA

Spoiled gradient echo with high flip angle and short TR
Static magnetization becomes highly saturated
Relaxed inflowing blood has much higher signal

Arterial Spin Labeling

- Using RF pulses, modify (label) the longitudinal magnetization of arterial blood water, typically by inversion.
- Decay constant is T₁ (~1.5s)

- Wait for labeled blood to flow to target tissue
- Measure labeled magnetization in target tissue
- Delivery time is ~1s

Properties of ASL

Advantages:

- •Short lived H₂O tracer
 - •Fast exchange into tissues
 - •Kinetics related only to delivery No outflow
 - •Inherently proportional to perfusion
- Non-Invasive
 - •Repeatable indefinitely

Disadvantages:

- •Short lived H₂O tracer
 - •Strong tradeoff between delivery and $\rm T_1$ decay
- •Low SNR
 - •Perfusion is ~0.01s⁻¹

The ASL Measurement

delay

Tag by Magnetic Inversion Acquire image of

Control

tissue + tagged blood

Acquire image of tissue + relaxed blood

ASL Signal = Control - Tag \propto Perfusion

Classes of ASL Labeling Methods

CASL: Flow Driven Adiabatic Inversion Effective field in frame that rotates at ω_{L} : $\vec{B}_{o} = B_{1}\hat{i} + z(t)G_{z}\hat{k}$ Ζ ΛZ ∧ Z $z(t)G_Z$ У У У $z(t)G_7$ X Х Х \mathbf{B}_1 \mathbf{B}_1 Flow $\frac{\delta\theta}{\delta t} < \gamma B_e$ RF Driven Adiabatic Inversion Gz **Continuous ASL**

Calculation of CBF

Clinical ASL

Ischemic Penumbra: Perfusion > Diffusion Mismatch

Glioblastoma Multiforme

LICA Occlusion: Tissue at Risk

Hyperperfusion post anoxia

Wake Forest: Deibler et al, AJNR August 2008

Cardiac MRI - Goals

Metric	MRI	Competing
Function - Ejection Fraction	Cine	Echocardiography
Function – Contractility	Myocardial Tagging	
Function - Valves	Cine	Echocardiography
Coronary Arteries	Gated TOF	Cardiac Catheterization
Perfusion	Gd Bolus, <mark>ASL</mark>	SPECT, PET, CT

Main Challenge: MOTION

- Beating
- Respiration
- Patient

200 time (r

400

100

http://youtu.be/BhMFhbcp2Jg

Coronary Arteries

FADAM.

Gating/Navigation

- •Cardiac Gating
- •Respiratory Gating
- •Breath hold
- •Navigation
- •Data filtering

Gated, no nav +diaphragm nav +fat nav

http://www.med-ed.virginia.edu/courses/rad/cardiacmr/Techniques/Tagging.html

Arterial Spin Labeling

Image myocardium

ASL Tagging Schemes

2D Pulsed Tagging

1.8 1.6 1.4 1.2 1 0.8 0.6

Magnetization Transfer

MT Ratio

Image Credit: http://commons.wikimedia.org/wiki/File:Conformational_states_of_PPDK.png

Magnetization Transfer: Applications

Static tissue suppression for MRA Henkelman et al, *NMR Biomed*. 2001;14:57–64

CEST: Chemical Exchange Saturation Transfer

Cai et al. Nature Medicine **18**, 302–306 (2012) doi:10.1038/nm.2615

Lesion detection in MS Pike G B et al. Radiology 2000;215:824-830

Summary

ASL: 10cm, T₁

MRA: TOF 1cm, T₁; PC 1mm, T₂

Tagging: 1cm, T₁

Diffusion: 10µm, T₂

MT: 1ηm, T₁