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What is diffusion and 
why do we care about it?

Self-diffusion is the thermally driven random motions of molecules 
that occurs in the absence of a concentration gradient

The self-diffusion of water is ongoing in the human body and its 
characteristics depend on the local tissue 

architecture and physiology

Therefore the ability to measure self-diffusion offers the possibility of 
non-invasively measuring tissue structure and physiology
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A Brief History of Diffusion Measurement

Lucretius (ca. 99BC-55BC)
Roman philosopher and poet
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A Brief History of Diffusion Measurement

their dancing is an actual indication of underlying 
movements of matter that are hidden from our sight...”

http://www.youtube.com/eYeFractal
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Convection vs Diffusion
A Cautionary Note

The large scale swirling of the dust particles is primarily 
due to air currents (convection) but the much smaller scale

 jittery movements are diffusion
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Convection vs Diffusion
A Cautionary Note

Convection
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A Brief History of Diffusion Measurement

Jan Ingenhousz (1730 – 1799)
Dutch botanist and physiologist

Described the “irregular movements” of coal dust 
on the surface of alcohol
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A Brief History of Diffusion Measurement

Robert Brown (1773 – 1858)
British botanist and surgeon
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A Brief History of Diffusion Measurement

Observation: 
irregular movement of pollen granules in water
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A Brief History of Diffusion Measurement
“Brownian Motion”

Brown’s hypothesis:  They’re alive
Experiment: Repeat pollen experiment using tiny shards of window glass

Result:  Same!
Conclusion: Not alive

Theory: ???
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Einstein’s Theory of Brownian Motion

Albert Einstein (1879 – 1955)
German physicist

Monday, November 25, 13



Einstein’s Theory of Brownian Motion

Einstein’s Theory

Part 1: Equation describing motion of a Brownian particle

Part 2: Relate diffusion to experimentally measurable quantities
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Einstein Theory of Brownian Motion
Part I

@⇢

@t

= D

@

2
⇢

@x

2

change with time change with space

The Diffusion Equation

The particle density ⇢(x, t) at a position x at time t obeys

diffusion coefficient
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Einstein Theory of Brownian Motion
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Einstein Theory of Brownian Motion
Part I

The solution to the Diffusion Equation 
for particles initially at location x0

This is a Gaussian (or Normal) distribution 
with mean position

and variance in the position

⇢(x, t) =
1p
4⇡Dt

e

�(x�x0)
2
/4Dt

x̄ = x0

�

2
x

= (x� x0)2 = 2Dt
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Einstein Theory of Brownian Motion
Part I
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Einstein Theory of Brownian Motion
Part I

implies that, on average, 
the particles do not move from their initial position 

implies that the variance of a Brownian particle’s 
position is proportional to the diffusion coefficient D 

and time t

What does this mean?

x̄ = x0

�2
x

= 2Dt
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Einstein Theory of Brownian Motion
Part I
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Einstein Theory of Brownian Motion
Part I

and thus not linearly proportional to time (like flow), 
but to the square root of time

Einstein argued that the displacement 
of a Brownian particle is thus the RMS distance 

Diffusion in Brain Tissue:
D ≅ 1 µ2/ ms = (0.001 mm2/s)

For t=100 msec, Δx ≅ 14 µ

�x =
q
(x� x0)2 =

p
2Dt
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Gaussian Diffusion

P (x|x
o

, ⌧) =
1p

4⇡D⌧

e

� (x�x

o

)2

4⇡D⌧

� =
p
2D⌧

0 30x0

D ⇡ 10�3mm2/s

⇡ 1µm2/ms
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Einstein Theory of Brownian Motion
Part I
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Diffusion vs Flow

⌧ = 100ms

�x ⇡ 100µm

D ⇡ 10�3mm2/s
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Einstein Theory of Brownian Motion
Part I

�x ⇡ 14µm
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Einstein Theory of Brownian Motion
Part II
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Einstein Theory of Brownian Motion
Part II

The diffusion coefficient is 

D = ↵
T

⌘r

Diffusion coefficient goes up with temperature
and down with viscosity and particle radius

It’s sensitive to the local environment!
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Modeling diffusion: Random Walk

MRI is all about mapping the locations of molecules ...

 ... we need a way to model the spatial locations 
of Brownian molecules as a function of time
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⌧ = constant

Modeling diffusion: Random Walk
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Modeling diffusion: Random Walk

The distribution of particles after a time τ 

Monday, November 25, 13



Gaussian diffusion

P (x|x
o

, ⌧) =
1p

4⇡D⌧

e

� (x�x

o

)2

4⇡D⌧
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Modeling diffusion: Random Walk

The distribution of particles after a time τ 
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Gaussian diffusion
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0.1

0.2

0.3

0.4

pHxL

Modeling diffusion: Random Walk

The distribution of particles after a time τ 

P (x|x0, ⌧) ⇠ N(x0,�
2)
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isotropic diffusion in 2D
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Diffusion Dimensions
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Diffusion Dimensions
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a typical imaging voxel dimension
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Probability Contours
(isotropic diffusion)
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Anisotropic diffusion in 2D
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Anisotropic diffusion in 2D
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Anisotropic diffusion in 2D
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Anisotropic diffusion in 2D
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Covariance matrix
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x
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P (r|r0, ⌧) ⇠ N(r0,⌃)

Anisotropic diffusion in 2D

⌃ =

✓
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0
0 �2

y

◆
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Diffusion Anisotropy in neural tissues
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Diffusion Anisotropy in neural tissues

Dk ⇡ 3D?

(1.2µ2/ms) (0.4µ2/ms)

Dk

D?

microtubules 
and 

neurofilaments

myelin sheath

axonal membrane
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Diffusion Anisotropy in 3D
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Diffusion Anisotropy in 3D
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Diffusion Anisotropy in 3D

probability contours in 3D

eigenvectors
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The Sensitivity of MRI to Diffusion
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We’ve described the spatial and 
Temporal characteristics of the 

molecules.  

What is the influence of this on the 
MRI signal?

The Sensitivity of MRI to Diffusion
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The Bipolar Gradient Pulse (gradient echo)
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The Bipolar Gradient Pulse (gradient echo)
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The Bipolar Gradient Pulse (spin echo)
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The Bipolar Gradient Pulse (spin echo)
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Stationary Spins in Bipolar Pulse
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Echo-Planar Imaging
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Key Fact
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Key Fact

Only diffusion along the direction of the 
applied gradient has an effect
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early NMR measurements of Diffusion
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early NMR measurements of Diffusion
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The MRI Signal
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S(') =

Z

⌦
dx spins(location, phase)

signal = Sum over all spins

The MRI Signal
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S(') =

Z

⌦
dx ⇢(x)e�i'(x,t)

signal = Sum over all spins

The MRI Signal

x
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signal = Sum over all spins

The MRI Signal

x

S(') =

Z

⌦
dxP (x, t) e�i'(x,t)

S(') =

Z

⌦
dxP (x, t) e�i'(x,t)
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The Diffusion Weighted Signal
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Signal and Distribution are 
Fourier Transform pairs

s(q, �) =
�

P (r̄, �)e�iq·r̄dr̄

P (r̄, �) =
�

s(q, �)eiq·r̄dq

The Diffusion Weighted Signal

So, in principal, you can measure P(r,τ)  by collecting
data throughout q-space, just like imaging.

In practice, very time consuming
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The Estimation Problem
for Gaussian Diffusion

Monday, November 25, 13



The Estimation Problem
for Gaussian Diffusion

S(') =

Z

⌦
dxP (x, t) e�i'(x,t)
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The Estimation Problem
for Gaussian Diffusion

S(') =

Z

⌦
dr̄P (r̄, t) e�iqr̄

Gaussian
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S(b) = S(0) e�bD + ⌘S(b) = S(0) e�bD + ⌘

b = q2⌧

The Estimation Problem
for Gaussian Diffusion

⌧ = �� �

3
G(t)

t

G
x

�

G
x

�

�

measured signal
non-diffusion weighted

signal (b=0) pulse sequence parameters

object of our desire!

noise

q = �G
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The signal from Gaussian Diffusion

s(b) = s(0)e�bD + �(b)

200 400 600 800 1000b
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s

Monday, November 25, 13



The b-value
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The b-value

G(t)
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dt dt dt dt dt

attenuation for each 
little time interval:

dt
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dt
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The b-value

G(t)

t

dt dt dt dt dt

attenuation for each 
little time interval:

wheretotal attenuation A⌧ =
nY

i=1

Ai Ai = e�k2Ddt

dt
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A1

dt
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dt

An
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The b-value

G(t)

t

dt dt dt dt dt

attenuation for each 
little time interval:

wheretotal attenuation A⌧ =
nY

i=1

Ai Ai = e�k2Ddt

dt

g

A1

dt

A2

dt

An

A⌧ =
nY

i=1

e�k2Ddt = e�D
Pn

i=1 k2 dt = e�D
R
k2 dt

dt ! ✏
b

A⌧ = e�D
R
k2dt
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The b-value
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The b-value
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The b-value

�G(t)

t

� �

g g

b = g2�2(�+
2

3
�)

b = g2
�3

3
+ g2�2�+ g2

�3

3

Z
k2 dt = + +g2

Z �

0
t2 dt g2

Z �

0
t2 dtg2�2

Z �

0
dt
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What gradients are doing to k-space
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What gradients are doing to k-space

t

Gy(t)

t

Gx(t)

spatial modulation of the phase

k · x = kxx + kyy = �Gxtx + �Gyty
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gradients alter the k-space representation of the object
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Directional Diffusion Encoding
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Anisotropic diffusion in 2D
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Covariance matrix

-6 -4 -2 2 4
x

-3

-2

-1

1

2

3

y

P (r|r0, ⌧) ⇠ N(r0,⌃)

Anisotropic diffusion in 2D
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Covariance matrix
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P (r|r0, ⌧) ⇠ N(r0,⌃)

Anisotropic diffusion in 2D
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◆

Diffusion Tensor
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x
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0 D
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, D
y

} are the principal di↵usivities
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Measuring the Diffusion Tensor

-6 -4 -2 2 4
x

-3

-2

-1

1

2

3

y

D =

✓
D

x

0
0 D

y

◆

S(b, r̂) = S(0)e�bD̃ + ⌘
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Measuring the Diffusion Tensor
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projection of an ellipsoid!
not like projection of a vector
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direction
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Measuring the Diffusion Tensor
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Measuring the Diffusion Tensor

fiber axis
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The Shape of Diffusion
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The Shape of Diffusion
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The Estimation of Diffusion
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The Estimation of Diffusion
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Anisotropic Gaussian Diffusion
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Anisotropic Gaussian Diffusion

eigenvectors

2.  The orientation of the eigenvectors is related to the 
orientation of the structure

1.  The relative dimensions of the contours tells us 
about local structure
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Anisotropic diffusion in 2D
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Anisotropic diffusion in 2D

-15 -10 -5 5 10 15
x

-15

-10

-5

5

10

15
y

⌧ = 1ms

Impermeable barriers
(a 2D tube)

Monday, November 25, 13



Anisotropic diffusion in 2D
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1.  Anisotropy induced by local geometry
2.  Sensitivity to geometry depends upon diffusion time τ
3.  While the D of the liquid may be a constant, there is an 
apparent diffusion coefficient (ADC) that varies with direction

Restricted diffusion

Monday, November 25, 13



The 3D Gaussian Distribution:
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The 3D Gaussian Distribution:

Covariance matrix Diffusion Tensor
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The Diffusion Tensor
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�

The Diffusion Tensor

{~e1,~e2,~e3}

are the three unique directions along which the 
molecular displacements are uncorrelated

The three eigenvectors of D

The three eigenvalues of D

are the principle diffusivities

{D
x

, D
y

, D
z

}
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Rotated tube
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Rotated tube

If the tube is not aligned with the coordinate system of the 
measurements, the diffusion along the measurement axes 
appears correlated 

coordinate system of tube
coordinate system of 

measurements
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The 2D Gaussian Distribution:

P (r|r0, ⌧) ⇠ N(r0,⌃)
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The 2D Gaussian Distribution:

Covariance matrix Diffusion Tensor

r = {x, y}

⌃ =

✓
�2
x

0
0 �2

y

◆
= 4⌧

✓
D

x

0
0 D

y

◆

-6 -4 -2 2 4
x

-3

-2

-1

1

2

3

y

P (r|r0, ⌧) ⇠ N(r0,⌃)

Monday, November 25, 13



The 2D Gaussian Distribution:

Covariance matrix Diffusion Tensor

r = {x, y}

-6

-4

-2

2

4

x

-3

-2

-1

1

2

3

y

P (r|r0, ⌧) ⇠ N(r0,⌃)

Monday, November 25, 13



Generally fibers are not aligned 
along magnet coordinates!
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Generally fibers are not aligned 
along magnet coordinates!

rotated relative to laboratory 
coordinate system

same orientation as laboratory 
coordinate system

laboratory 
coordinate system
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The 3D Gaussian Distribution:
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The 3D Gaussian Distribution:

Covariance matrix Diffusion Tensor
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The 3D Gaussian Distribution:
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The 3D Gaussian Distribution:

Covariance matrix
Diffusion Tensor
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Tensor Rotations
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Tensor Rotations
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A baseball is spherical - it has no sense of orientation
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Tensor Rotations

�

... but a football is ellipsoidal, and does!
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Tensor Rotations
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Tensor Rotations
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What we want

�
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What we want
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This is what eigenvector routines do!
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The Estimation of Diffusion
CAUTION
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The Estimation of Diffusion
CAUTION

S(b, r̂) = S(0)e�bD(r̂) + ⌘

D(r̂) = �1

b
log

✓
S(b, r̂)

S(0)
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Not additive noise anymore!
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The Bipolar Gradient Pulse (spin echo)
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Extension to Imaging
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�

Extension to Imaging

Because the diffusion weighting does not interfere with the stationary tissue signal, we can 
“insert” it into a standard imaging procedure 

Gx
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d d

D
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90° 180° echo
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DTI
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DTI
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DTI voxel signal
from multiple images at 

different directions

reconstruct D
(diffusion ellipsoid)
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Diffusion acts as a convolution in the image domain
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Diffusion acts as a convolution in the image domain

✶

a zillion spins

t = 0 t = ⌧

τ
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FT

k

� ⇡ 15µm ⌧ voxel dimensions

>> image k-space 
dimensions

e�x

2
/D dt , e�k

2
Ddt
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FT
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� ⇡ 15µm ⌧ voxel dimensions

>> image k-space 
dimensions
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FT

k

 � FOV = 24 cm �!

FT

b=0

FT

DWI

� ⇡ 15µm ⌧ voxel dimensions

>> image k-space 
dimensions
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2
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Diffusion Ellipsoid
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Diffusion Ellipsoid

diffusion ellipsoids
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Average Diffusion in a voxel

<D>  =  ( λ1 + λ2 + λ3 )/3 = <λ> 

Tr = Trace = sum of diagonal elements

Three eigenvalues of D are the three 
principle mean-squared displacements along 

its three principal directions
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Average Diffusion in a voxel
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Average Diffusion in a voxel

anatomical

mean D
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Diffusion Anisotropy in a voxel

One measure of diffusion anisotropy is the variance of the 
eigenvalues, normalized to the mean-squared eigenvalue

anisotropy / (�
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Fractional Anisotropy
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Diffusion Anisotropy in a voxel
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Diffusion Anisotropy in a voxel

anatomical

FA
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Diffusion Anisotropy 
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Diffusion Anisotropy 
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The uses of anisotropy:
Cardiac Mechanics
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Streeter et al. 1969

Endocardium

Epicardium

Legrice et al. 1994

The uses of anisotropy:
Cardiac Mechanics
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Streeter, 1969

Excised canine heart (Howard, UCSD Cardiac Biomechanics Group 2011) using
3D Spiral FSE DTI sequence (Frank et al, Neuroimage 2010) 

The uses of anisotropy:
Cardiac Mechanics
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Our first whole human heart DTI (ex vivo)

The uses of anisotropy:
Cardiac Mechanics
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From local (voxel) anisotropy to extended 
spatially coherent anisotropy:

Tractography
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From local (voxel) anisotropy to extended 
spatially coherent anisotropy:

Tractography
Local Anisotropy Local/Global Coherence

Dk ⇡ 3D?

(1.2µ2/ms) (0.4µ2/ms)

Dk

D?

voxel
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Streamlines
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Streamlines

Flow vector field

(principal eigenvector)

analogy

Estimated orientationhigh

low

Anisotropy
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What we expect of Diffusion Imaging

Monday, November 25, 13



What we expect of Diffusion Imaging

...the primary diffusion 
direction should be oriented in 
the same direction as the fiber.

For voxels with aligned 
fibers (as in the corpus 

callosum)...

Some information about the microscopic structure
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Anterior

Supraspinatus

Subscapularis

Infraspinatus
+ Teres Minor

Posterior

Supraspinatus

Supraspinatus DTI

Subscapularis

A. Rodrigues-Soto,
Ward group
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Supraspinatus Tractography @60 directions

A. Rodrigues-Soto,
Ward group
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Supraspinatus Tractography @60 directions

A. Rodrigues-Soto,
Ward group
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Supraspinatus Tractography @60 directions

A. Rodrigues-Soto,
Ward group
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What is the Neural Structure of Elasmobranchs?
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What is the Neural Structure of Elasmobranchs?

Mustelus henlei
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What is the Neural Structure of Elasmobranchs?

Mustelus henlei Data: M. Tyszka, CalTech
R. Berquist, CSCI
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Segmentation: K. Yopak, CSCI

What is the Neural Structure of Elasmobranchs?
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What is the Neural Structure of Elasmobranchs?

Data: M. Tyszka, CalTech
R. Berquist, CSCIDTI @ 11.7T
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Spinal Cord Injury
(Rat Model at 7T)
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Spinal Cord Injury
(Rat Model at 7T)
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Spinal Cord Injury
(Rat Model at 7T)

Jacob Koffler, Ph.D.
Mark H. Tuszynski, M.D., Ph.D. 
Center for Neural Repair
University of California, San Diego

spinal cord white matter

dorsal ramus
ventral ramus

spinal cord white matter

dorsal ramus
ventral ramus
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Spinal Cord Injury
(Rat Model at 7T)

Jacob Koffler, Ph.D.
Mark H. Tuszynski, M.D., Ph.D. 
Center for Neural Repair
University of California, San Diego

spinal cord white matter

dorsal ramus
ventral ramus

spinal cord white matter

dorsal ramus
ventral ramus

But what’s happening here?
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How much information can we extract?
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How much information can we extract?
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How much information can we extract?
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How much information can we extract?
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How much information can we extract?

According to Jonathon Hill of Arizona State University, the 
reason that the rock looks like an artificial construction is 
very simple: lack of resolution in the image.

Monday, November 25, 13



What’s the problem?
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What’s the problem?
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In this work the double Pulsed Gradient Spin Echo
(d-PGSE) experiment [7–9] is used to detect or discover
whether gray matter exhibits microscopic diffusion anisot-
ropy. The d-PGSE sequence (Fig. 2) and its two-dimen-
sional variants [10] are already well-established
techniques in non-medical applications to characterize
local anisotropy of macroscopically isotropic materials,
such as liquid crystals [7,11] prolate yeast cells [8] and
plants [12].

The d-PGSE sequence consists of two single-PGSE
blocks, which are concatenated. The resulting spins from
the first PGSE block become the population of spins inter-
rogated by the second PGSE block. Because the resulting

echoes depend on the spin evolution in both encoding peri-
ods, these contain information about the spins’ diffusion
histories during both PGSE blocks.

To assess the presence of microscopic diffusion anisot-
ropy, one compares two d-PGSE experiments in which dif-
fusion sensitizing gradients are applied in the same and in
orthogonal directions. For microscopically isotropic mate-
rials, regardless of the diffusion gradient encoding direc-
tions, the resulting echo attenuations all superimpose.
However, in the case of materials that exhibit local anisot-
ropy, the resulting curves observed from the collinear and
orthogonal diffusion gradient encoding directions do not
superimpose. Consequently, a difference between these
curves indicates microscopic anisotropy.

To explore the origin of gray matter anisotropy, we also
constructed a ‘‘gray matter’’ phantom that is macroscopi-
cally isotropic and microscopically anisotropic. The phan-
tom is designed to be stable, so it can also be used as a
diffusion standard for calibrating the d-PGSE sequences
and NMR hardware. Furthermore, the phantom has a sim-
ple geometry so that the displacement history of spins can
be mathematically modeled.

2. Materials and methods

2.1. Experimental design

The double-PGSE sequence was applied in nine different
combinations of gradient directions between the two pairs
of gradient pulses (PGSE blocks). Three collinear
directions: X_X, Y_Y and Z_Z; and six orthogonal

90x 180y 180y

first echo
detected

echo

rf

PGSE block

G1 G2 G2G1

∆ ∆

δ
gradient

τm

1st echo time

2nd echo time

Fig. 2. Double-PGSE pulse sequence. G1 and G2 can be either in the same
direction (i.e., collinear) or in orthogonal directions. The mixing time, sm,
is the time between the two d-PGSE blocks.
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Fig. 1. (a,d) Illustration of gray and white matter tissue with respect to a macroscopic pixel. Note. MRI pixel length scale is significantly larger than that
illustrated. (b,e) The distributions of diffusion directors of the gray and white matter fibers within each pixel. (c,f) The resulting displacement profile
averaged over the pixel.
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But we know Neural Tissues 
aren’t that simple

Rat WM electron microscopic image
Courtesy, M. Ellisman, UCSD
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Failure of the standard model
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Failure of the standard model

A simple partial-volume model

Two crossing fibers resulting distributions
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Ambiguities in the standard model
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Ambiguities in the standard model
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Failure of the standard model
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Failure of the standard model

Distribution of spins Estimated D
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The Major Problem:
Heterogeneous Voxels
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The Major Problem:
Heterogeneous Voxels

high

low

Anisotropy
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Tractography Problem
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Tractography Problem
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Failure of the standard model
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Failure of the standard model

Not only angular issues, but b-value dependencies as well!
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simple two diffusion coefficient model
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Failure of the standard model

Not only angular issues, but b-value dependencies as well!
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simple two diffusion coefficient model

Indistinguishable regime
(looks like single D)
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High Angular Resolution DTI (HARDI)
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High Angular Resolution DTI (HARDI)
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fiber
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Structure of lobes relative to fiber orientation is “non-intuitive”!
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Tractography Problem, revisited
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Tractography Problem, revisited

Higher order tensor fit to data
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High Angular Resolution DTI (HARDI)

Standard DTI HARDI
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Heterogeneous Voxels
and High Angular Resolution Sampling
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Heterogeneous Voxels
and High Angular Resolution Sampling

a voxel with crossing fiber 
bundles and random 

spherical cells...

signal from 162 directions
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Conclusion

Diffusion MRI has a unique sensitivity 
to tissue architecture and physiology

However ...

...and diffusion sensitivity is relatively easy 
to incorporate into standard sequences

•Data artifact correction non-trivial
•Analysis is complicated
•Interpretation is difficult

But it’s really cool!
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Fundamental Limitation of DTI
Heterogeneous Voxels
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Fundamental Limitation of DTI
Heterogeneous Voxels

gray matter
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Fundamental Limitation of DTI
Heterogeneous Voxels

In this work the double Pulsed Gradient Spin Echo
(d-PGSE) experiment [7–9] is used to detect or discover
whether gray matter exhibits microscopic diffusion anisot-
ropy. The d-PGSE sequence (Fig. 2) and its two-dimen-
sional variants [10] are already well-established
techniques in non-medical applications to characterize
local anisotropy of macroscopically isotropic materials,
such as liquid crystals [7,11] prolate yeast cells [8] and
plants [12].

The d-PGSE sequence consists of two single-PGSE
blocks, which are concatenated. The resulting spins from
the first PGSE block become the population of spins inter-
rogated by the second PGSE block. Because the resulting

echoes depend on the spin evolution in both encoding peri-
ods, these contain information about the spins’ diffusion
histories during both PGSE blocks.

To assess the presence of microscopic diffusion anisot-
ropy, one compares two d-PGSE experiments in which dif-
fusion sensitizing gradients are applied in the same and in
orthogonal directions. For microscopically isotropic mate-
rials, regardless of the diffusion gradient encoding direc-
tions, the resulting echo attenuations all superimpose.
However, in the case of materials that exhibit local anisot-
ropy, the resulting curves observed from the collinear and
orthogonal diffusion gradient encoding directions do not
superimpose. Consequently, a difference between these
curves indicates microscopic anisotropy.

To explore the origin of gray matter anisotropy, we also
constructed a ‘‘gray matter’’ phantom that is macroscopi-
cally isotropic and microscopically anisotropic. The phan-
tom is designed to be stable, so it can also be used as a
diffusion standard for calibrating the d-PGSE sequences
and NMR hardware. Furthermore, the phantom has a sim-
ple geometry so that the displacement history of spins can
be mathematically modeled.

2. Materials and methods

2.1. Experimental design

The double-PGSE sequence was applied in nine different
combinations of gradient directions between the two pairs
of gradient pulses (PGSE blocks). Three collinear
directions: X_X, Y_Y and Z_Z; and six orthogonal
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In this work the double Pulsed Gradient Spin Echo
(d-PGSE) experiment [7–9] is used to detect or discover
whether gray matter exhibits microscopic diffusion anisot-
ropy. The d-PGSE sequence (Fig. 2) and its two-dimen-
sional variants [10] are already well-established
techniques in non-medical applications to characterize
local anisotropy of macroscopically isotropic materials,
such as liquid crystals [7,11] prolate yeast cells [8] and
plants [12].

The d-PGSE sequence consists of two single-PGSE
blocks, which are concatenated. The resulting spins from
the first PGSE block become the population of spins inter-
rogated by the second PGSE block. Because the resulting

echoes depend on the spin evolution in both encoding peri-
ods, these contain information about the spins’ diffusion
histories during both PGSE blocks.

To assess the presence of microscopic diffusion anisot-
ropy, one compares two d-PGSE experiments in which dif-
fusion sensitizing gradients are applied in the same and in
orthogonal directions. For microscopically isotropic mate-
rials, regardless of the diffusion gradient encoding direc-
tions, the resulting echo attenuations all superimpose.
However, in the case of materials that exhibit local anisot-
ropy, the resulting curves observed from the collinear and
orthogonal diffusion gradient encoding directions do not
superimpose. Consequently, a difference between these
curves indicates microscopic anisotropy.

To explore the origin of gray matter anisotropy, we also
constructed a ‘‘gray matter’’ phantom that is macroscopi-
cally isotropic and microscopically anisotropic. The phan-
tom is designed to be stable, so it can also be used as a
diffusion standard for calibrating the d-PGSE sequences
and NMR hardware. Furthermore, the phantom has a sim-
ple geometry so that the displacement history of spins can
be mathematically modeled.

2. Materials and methods

2.1. Experimental design

The double-PGSE sequence was applied in nine different
combinations of gradient directions between the two pairs
of gradient pulses (PGSE blocks). Three collinear
directions: X_X, Y_Y and Z_Z; and six orthogonal
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is the time between the two d-PGSE blocks.
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Fig. 2. Schematic of the phase correction algorithm. A represent the complex image data from a single interleave, and
P

l
AðlÞ means the sum over all interleaves.
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