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prefrontal cortex activation during acquisition of advantageous
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The process of accurately predicting which actions are associated with

advantageous versus disadvantageous outcomes is an important

function of daily life. An integral part of this process is being able to

detect when the association between an action and an outcome changes.

This investigation examined the hypothesis that the inferior prefrontal

cortex is critical for the detection of trends and that a trend process

derived from the temporal difference model accomplishes this

detection. Nineteen normal right-handed volunteers completed 120 4-

s trials of a Rock Paper Scissors (RPS) task during functional magnetic

resonance imaging. Subjects acquired the selection of advantageous

actions during the RPS task. Activations in the medial frontal gyrus

(BA 10), left ventrolateral frontal gyrus (BA 11/47), and left pallidum

were significantly higher during trials in which subjects acquired the

advantageous action. The time course of individually derived trend

detection functions was found to be time-locked to the hemodynamic

changes in the inferior frontal gyrus. These findings are consistent with

the hypothesis that the inferior prefrontal cortex computes a trend

from previously experienced action–outcome sequences based on a

value function derived from the temporal difference model.

D 2003 Elsevier Inc. All rights reserved.
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Introduction

Decision-making is complex and involves several component

processes. For effective decision-making, these processes have to be

integrated functionally, that is, information needs to be exchanged

across these processes and neural substrates. A key process in

decision-making is the establishment of a value system that can

guide the selection of a response. This value system may represent

the integration of associations of the available action with advanta-

geous or disadvantageous outcomes as well as the strength of these
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associations relative to other available outcomes. The neural pro-

cesses and computations that may underlie this value system has

been under intense investigation and several theoretical models

(Egelman et al., 1998; Gold and Shadlen, 2002; Shadlen and

Newsome, 1996; Suri and Schultz, 1999) have been proposed to

explain how response selection takes place in a decision-making

situation.

These theoretical models have in common a connection between

specific brain systems and processes underlying the adjustment of

the value system. For example, in the Log-likelihood model

(Shadlen and Newsome, 1996), a Bayesian-like process (Pouget

et al., 2003) is proposed to modify probabilities of hypotheses

according to perceived stimuli (Gold and Shadlen, 2002), which is

thought to occur in the parietal cortex (Platt and Glimcher, 1999;

Shadlen and Newsome, 2001). In comparison, the prediction error,

or temporal difference model (Schultz et al., 1997; Suri and Schultz,

1999) focuses on monoaminergic neurons in general, which appear

to broadcast prediction errors, that is, the difference between the

expected and observed reward, as global teaching signals to

different areas of the brain (Schultz and Dickinson, 2000), and

dopamine neurons in particular, which generate a short-latency,

phasic reward signal (Schultz, 2002).

The targets of these adjustment processes involve a wide range of

brain areas, which have been implicated in decision-making pro-

cesses (Paulus et al., 2001). Among these processes are the estab-

lishment of a relative value system in the inferior prefrontal cortex

(Damasio et al., 1996; Frith et al., 1991; Jueptner et al., 1997), which

includes ventromedial, ventrolateral, and orbitofrontal cortex

(O’Doherty et al., 2003a); the detection of changing values in medial

prefrontal cortex (Knutson et al., 2003; Zysset et al., 2002) or the

adjacent anterior cingulate cortex (Bush et al., 2002; Pochon et al.,

2002); and the implementation of an anticipatory reward or punish-

ment signal in the ventral striatum (Knutson et al., 2001) and

amygdala (Baxter and Murray, 2002; Kahn et al., 2002; Pagnoni

et al., 2002).

In this investigation, we combined a computational approach

based on the prediction error or temporal difference model that

establishes values for available actions in a decision-making situa-

tion with functional neuroimaging to elucidate the functions of
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Fig. 1. Task design and an example of a subject specific outcome regressor.
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neural substrates in adjusting the value systemwhen actions become

advantageous or disadvantageous. Although the associations be-

tween available actions and advantageous or disadvantageous out-

comes were changed suddenly, subjects were not informed about

this change and, thus, needed to detect these changes empirically to

select the best action. The goal was to determine whether an ‘online’

implementation of the association between actions and outcome

values and a signal that would indicate a change in this association

(trend detection) was consistent with functional magnetic resonance

imaging (fMRI)-related activation changes in the inferior prefrontal

cortex. Therefore, this investigation examined the hypothesis that
Fig. 2. One hundred twenty trials of the Rock Paper Scissors task were divided int

constant. Selecting the preferred response won 9/10 times, selecting the even respo

The preferred, even, and worse response were switched every 20 trials. For examp

select paper in 9/10 encounters. When the subject selects paper, the computer wi

computer will select rock in 8/10 encounters and scissors or paper in 1/10 encount

phase and a regressor was used for each phase to estimate the hemodynamic resp
the inferior prefrontal cortex is critical for the detection of trends, and

that a trend process derived from the temporal difference model

accomplishes this detection. To investigate this hypothesis, a com-

puterized version of the Rock Paper Scissors (RPS) task was used

with pre-determined and varying contingencies.
Methods

Nineteen normal right-handed volunteers (14 males, 5 females,

age = 36.3 F 6.2, mean F SD) gave informed consent for a
o six blocks of 20 trials (80 s) during which the preferred response was kept

nse won ‘‘5/10’’ times, and selecting the worst response won ‘‘1/10’’ times.

le, when the subject selects scissors during the first block, the computer will

ll select scissors in 9/10 encounters and when the subject selects rock, the

ers. Each block was divided into an ‘‘early’’ (red line) and ‘‘late’’ (blue line)

onse.



Fig. 3. Acquisition curves for the selection of the preferred (black) over the

worst (grey) response during the course of a trial block and average

response latencies with SEM across trial blocks.
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protocol approved by the UCSD Human Research Protections

Program. Subjects had no history of psychiatric disorders or

medical problems. Before entering the MRI scanner, subjects

completed a 5-min practice version of the RPS task (Fig. 1). Once

in the scanner, subjects completed 120 4-s trials of the RPS task

flanked by 16 s resting periods in the beginning and end during an

8 min and 32 s functional scan acquisition. After the scanning

session, structured post-task questionnaires were obtained from 13/

19 subjects; the remainder of the subjects gave general verbal

reports.

Rock paper scissors task

This task was used to determine whether subjects are able to

select responses that are associated with wins and avoid responses

that are associated with losses; whether subjects are able to change

their response selection when the associated outcome contingencies

change. This task is based on the well-known Rock Paper Scissors

game. For the task, the typical rules apply: paper beats rock, rock

beats scissors, and scissors beat paper. The subjects were instructed

that they were playing against the computer and were told to

maximize their total point account (1 point for a win, 0 points for

a tie, and�1 point for a loss). The probability of reinforcement, that

is, beating the computer (e.g. subject chooses paper, computer

selects rock, subject gains one point), was pre-determined for each

response within a trial block (see Fig. 2). Unbeknownst to the

subject and without changing trial duration or inter-trial interval, the

preferred, even, and worst response were switched every 20 trials.

For example, when the subject selects scissors (preferred response)

during the first block, the computer will select paper in 9/10

encounters. When the subject selects rock (even response), the

computer will select rock in 8/10 encounters, paper in 1/10

encounters and scissors in 1/10 encounters. When the subject

selects paper (worst response), the computer will select scissors in
9/10 encounters. A total of 120 trials are presented; therefore the

‘‘best response’’ block switches 6 times after 20 consecutive trials in

the following order: scissors, paper, rock, scissors, rock, paper. The

main dependent variable was the proportion of response that is

associated with wins 9/10 times during each trial block.

During each trial, subjects saw pictures of a hand forming paper,

scissors, and rock signs on the left, middle, and right side of the

computer screen, respectively, for 1 s and heard the instruction

‘‘one, two, three’’ over a headphone (see Fig. 1). At 1 s into the trial,

subjects were presented with a ‘‘Go’’ sign in the center of the screen,

which provided the cue to select paper, scissors, or rock by pushing

the left, middle, or right button with the index, middle, or ring finger

of the right hand. Subjects had 2.5 s to respond, after which the trial

timed out until the next trial. Immediately after selecting a response,

the outcome was presented on the computer screen: the subject’s

selection was shown on the left and the selection of the computer

was shown on the right side of the screen. At the same time, the

subjects heard ‘‘you win’’, ‘‘you lose’’, or ‘‘a tie’’, and the score was

incremented, reduced by one, or left unchanged, while the total

score was displayed on the top of the screen.

Functional magnetic resonance imaging

During the RPS task, a functional imaging run sensitive to

blood oxygenation level-dependent (BOLD) contrast was collect-

ed for each subject using a 1.5-T Siemens (Erlangen, Germany)

scanner (T2*-weighted echo planar imaging, TR = 2000 ms, TE =

40 ms, 64 � 64 matrix, 20 4-mm axial slices, 256 scans). fMRI

volume acquisitions were time-locked to the onset of each trial.

During the same experimental session, a T1-weighted image

(MPRAGE, TR = 11.4 ms, TE = 4.4 ms, flip angle = 10j,
FOV = 256 � 256, 1 mm3 voxels) was obtained for anatomical

reference. For preprocessing, voxel time series were interpolated

to correct for non-simultaneous slice acquisition within each

volume and corrected for three-dimensional motion. Two subjects

were excluded due to large movement artifacts apparent during

systematic visual inspection of the voxel time series.

fMRI analysis pathway

The data were preprocessed and analyzed with the software

AFNI (Cox, 1996). The echo planar images were realigned to

the 128th acquired scan and time corrected for slice acquisition

order. To exclude the voxels showing an artifact-related signal

drop, a combined threshold/cluster-growing algorithm was ap-

plied to the mean of the functional images to compute a whole-

brain mask. This screened out non-brain voxels and voxels

falling within the artifact region. Three separate analyses were

carried out.

First, two a priori regressors of interest were constructed to

determine the activation during (1) early task-block phase and

(2) late task-block phase. Preliminary behavioral studies using

the RPS task revealed that subjects showed significant acquisi-

tion of the preferred response when comparing the first 10 trials

to the second 10 trials within a trial block. However, for the

regressors to be nearly orthogonal, we constructed a regressor

for the first eight trials and a regressor for the last eight trials of

each trial block, which allowed for a return of the regressor

height to baseline when convolved with a prototypical hemo-

dynamic response function. Thus, these regressors maximized

the contrast between the early and late phase of each block (20
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trials) and were convolved with a prototypical hemodynamic

response (Boynton et al., 1996) before inclusion in the regres-

sion model. Three regressors were used to model residual

motion (in the roll, pitch, and yaw directions). Regressors for

baseline and linear trends were used to eliminate slow signal

drifts. The AFNI program 3dDeconvolve (Ward, 2002) was

used to calculate the estimated voxel-wise response amplitude.

A Gaussian filter with FWHM 4 mm was applied to the voxel-

wise percent signal change data to account for individual

variations in anatomical landmarks. Data of each subject were

normalized to Talairach coordinates. The voxel-wise percent

signal change data were entered into a mixed model ANOVA

with task condition (early versus late) as a fixed factor and

subjects as a random factor. A threshold adjustment method

based on Monte-Carlo simulations was used to guard against

identifying false positive areas of activation (Forman et al.,

1995). Functional regions of interest, which were defined via

activation clusters that showed a cluster-wise a posteriori P <

0.05, in the inferior prefrontal cortex consisting of the ventro-

medial (BA 10) and ventrolateral (BA 11, 47) prefrontal cortex

as well as the pallidum, were used as masks to extract BOLD

fMRI time series data from each subject.

Second, three subject response-specific regressors were defined

for winning, tying, and losing trials to determine which neural

substrates differentially activate with varying outcomes. Analogous

to the analysis above, these regressors were convolved with a

prototypical hemodynamic response (Boynton et al., 1996) before

inclusion in the regression model. Similarly, three motion regres-

sors and regressors for baseline and linear trends were used. The

AFNI program 3dDeconvolve was used to calculate the estimated

voxel-wise response amplitude.

Third, individual subjects’ regressors that were obtained from the

trend detection model as derived from the modified temporal

difference model, which are described in detail below, were con-

volvedwith a prototypical hemodynamic response and entered into a

multiple regression model which included the motion regressors,

baseline, and linear drift. These individual regressors incorporate

both the inter-subject variability of the acquisition of the preferred

response as well as the temporal variability of the acquisition

process. Spatial filtering and volume-thresholding was applied as

specified above.

Statistical analyses

The voxel-wise percent signal change data were entered into a

mixed model ANOVA with response type as a fixed factor and

subjects as a random factor. Moreover, a within-subjects contrast

was computed between winning–losing trials to determine the

effects of outcome. Finally, the average percent signal difference

was extracted from regions of activation that were found to survive

this threshold/cluster method.

Temporal difference model and trend detection

For each response option, two value functions were created,

V + and V �, which represent values associated with ‘‘winning’’

and ‘‘losing’’. Temporal discount and learning parameters were

used to model the effect of ‘‘winning’’ and ‘‘losing’’ on the

subsequent selection of a response. The ‘‘discount parameters’’

(Suri and Schultz, 2001), a+ and a�, quantify the degree to

which the previous value function is discounted over time to
influence the decision-making on the current trial. The learning

parameters, b+ and b� (Pearce and Bouton, 2001; Wasserman

and Miller, 1997), model the degree to which ‘‘winning’’ or

‘‘losing’’ during the current trial affects the value function for the

next trial. The value functions for the Paper response are thus

modeled as:

Vþ
Paperði þ 1Þ ¼ aþVþ

PaperðiÞ þ bþðdðiÞ � Vþ
PaperðiÞÞ ð1Þ

V�
Paperði þ 1Þ ¼ a�V�

PaperðiÞ þ b�ðdðiÞ � V�
PaperðiÞÞ ð2Þ

where d(i) equals whether the subject experienced a win or a

loss at time i, respectively. The value function models for the

other responses have similar forms.

The value functions were used to compute the probability of

selecting a response using an approach that was previously de-

scribed in Egelman et al. (1998) and Montague and Berns (2002).

For example, the probability for selecting paper on trial i was

defined as:

PPaperðiÞ¼ expðVþ
Paper � V�

PaperÞ, X
j ¼ fPaper; Rock; Scissorsg

expðVþ
j �V�

j Þ ð3Þ

For each subject, the discounting and learning parameters were

estimated using an optimization algorithm implemented in the

statistical package R (Ihaka and Gentleman, 1996). Specifically,

the per trial model-prediction error was computed as:

Errorðaþ; a�; bþ; b�Þ

¼
Xn

i ¼ 2

X
j ¼ fPaper; Rock; Scissorsg

PjðiÞ � RjðiÞ
,

n � 1 ð4Þ

Here, RPaper(i) is 1 if the subject selected paper at the ith trial and

zero otherwise. The model-prediction error term corresponds to the

average difference between the observed response sequence and

the model-predicted probability of the response at any given trial.

Using a limited-memory modification of the variable metric

algorithm (Byrd, 1995), the model parameters were allowed to

fluctuate between {0,1} for each subject, which allows for testing

the hypothesis that random response selection (all parameters are

0) resulted in optimal prediction.

To test the hypotheses that (1) subjects used a procedure

consistent with the temporal difference model, a multivariate

analysis of variance was performed for all model parameters

({a+, a�, b+, b�} > 0). A paired t test was used to examine (1)

whether subjects based their selection more sensitively on losses

than on wins (b+ < b�) and (2) whether subjects showed equal

temporal discounting for wins and losses (a+ = a�).
To obtain a measure of trend detection, that is, the change of

relative frequency of response patterns across trials, the trial-

dependent root mean squared, RMS, was computed for each

option as

RMSðPPaperðiÞÞ ¼

Xi þ n

k ¼ i

PPaperðkÞ2

n
�

Xi þ n

k ¼ i

PPaperðkÞ
 !2

ð5Þ

To obtain a general estimator of change, an average RMS was

obtained by averaging across the three options (paper, rock, and
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scissors). The average RMS provides a measure of variability of

the prediction based on the value functions defined above. Similar

to the early versus late regressor analyses, the computation of the

RMS was based on eight consecutive trials (n = 8). The RMS is

maximized when the value function is either monotonically in-

creasing or decreasing, which corresponds precisely to the situation

when the optimum response is changing. Finally, the subject-

specific average RMS was convolved when a prototypical hemo-

dynamic response was used as a regressor as described above.
Fig. 4. (upper panel) Three areas showed a significant interaction between

the early and late phases of the block. Bilateral medial frontal gyrus (BA

10), left middle frontal gyrus (BA 11/47), and left pallidum show more
Results

Subjects acquired the selection of advantageous actions (Fig. 3)

and selected the preferred response 35 F 2% of the time during the

first eight trials and 44 F 2% during the second eight trials

(F(1,18) = 12.02, P < 0.01). In comparison, subjects selected the

worst response 28 F 1% during the first eight trials and 25 F 2%

during the last eight trials of each block (F(1,18) = 7.04, P < 0.01).

In comparison, there was no significant change in response latency

(F(1,18) = 0.20, NS). Subjects’ reports obtained via structured

questionnaires from 13 of the 19 subjects after scanning showed

that 7/13 thought the computer chose at random, 4/13 reported that

they noticed a pattern but were unable to specify the nature of the

pattern, one subject thought the computer was ‘‘minimizing los-

ses’’, and one subject thought the computer was using the subject’s

previous response.

As shown in Table 1 and Fig. 4a, activations in the medial

frontal gyrus (BA 10), left ventrolateral frontal gyrus (BA 11/47),

and left pallidum were significantly higher during the first eight

trials relative to the last eight trials of each block. Individual

differences between the acquisition of the advantageous responses

during the first eight and last eight trials of each block correlated

significantly with the activation difference between the early and

late trial block regressor in the left pallidum (r = �0.52, P < 0.05)

and with the activation in the medial frontal gyrus (r = �0.52, P <

0.05) but not with left ventrolateral frontal gyrus (r = �0.17, NS).

In the pallidum and medial frontal gyrus, the smaller the difference

between the late and early phase activation the less likely the

subject were to acquire the preferred response. Fig. 4b shows the

time series signal averaged over functional ROIs identified by the a

priori defined early versus late phase regressors. The correlations

between the medial frontal gyrus (BA 10), left ventrolateral frontal

gyrus (BA 11/47), and left pallidum with the average RMS

function obtained from the temporal difference model were 0.63,

0.64, and 0.50, respectively. Thus, although the magnitude of the

BOLD-fMRI response according to the a priori defined regressors

did not correlate with the acquisition measures of advantageous

versus disadvantageous action selection in all areas, the inter-
Table 1

Volume-thresholded clusters of areas that activated differently early versus

late during trial block

Region Volume x y z L/R F(2,18) Description BA

1 3072 �34 36 �5 L 25.4 Inferior frontal

gyrus

44/11

2 704 16 38 �4 R 13.7 Medial frontal

gyrus

10/32

3 576 �15 �1 2 L 10.3 Pallidum

activation during the early phase relative to the late phase. (lower panel)

The time course of these activations.
subject variability of the trend detection process correlated signif-

icantly with all three areas.

The time course of individually derived trend detection func-

tions and the BOLD hemodynamic response for the left inferior

frontal gyrus, which is based on volume-thresholded activation as

defined by the functional ROI derived from the trend detection

model, is shown in Fig. 5. As expected, the trend detection model

increases early during the trial block and is time-locked to the



Fig. 5. Average time course and SEM of activation in left inferior frontal gyrus (BA 44) as defined by the functional ROI derived from the trend detection

model. Inset shows functional ROI, z-coordinate according to Talariarch Atlas.

Table 3

Volume-thresholded clusters of areas that activated differently as a function
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hemodynamic changes in the inferior frontal gyrus. In addition to

this area, trend detection-related activation was also found in the

posterior parietal cortex and the superior temporal gyrus (Table 2)

but not in the medial frontal gyrus or the left pallidum.

A multivariate analysis of variance revealed that all model

parameters differed significantly from zero (F(4,15) = 532.22, P <

0.01), supporting the hypothesis that all parameters were required

in the temporal difference model to successfully predict the

behavior observed during the RPS task. Moreover, the model-

prediction error differed significantly from chance predictions
Table 2

Volume-thresholded clusters of areas that activated according to the trend

detection temporal difference model

Region Volume x y z L/R Description BA

1 1216 �62 �22 30 L Inferior parietal

lobule

40

2 832 �57 �23 7 L Superior temporal

gyrus

41

3 832 �40 56 56 L Superior parietal

lobule

7

4 768 �28 22 �3 L Inferior frontal

gyrus

11/47
(t(18) = 58.0, P < 0.01), indicating that the model predicted the

subject’s subsequent selection of paper, rock, or scissors signifi-

cantly better than chance. The estimation of the learning parame-

ters for wins and losses (b+ = 0.62 F 0.10; b� = 0.97 F 0.02)

showed that subject’s selection were more sensitively affected by

losses relative to wins (tpaired(18) = 3.22, P < 0.01). In comparison,

the temporal discount parameters (a+ = 0.69 F 0.08; a� = 0.78 F
of outcome

Region Volume x y z L/R F(2,18) Description BA

1 2112 �7 �71 48 L 15.21 Left precuneus 7

2 1792 34 0 46 R 33.03 Right middle

frontal gyrus

6/9

3 1344 �15 6 8 L 15.82 Left caudate

4 1216 31 49 6 R 11.18 Right middle

frontal gyrus

10/46

5 1216 �40 45 6 L 14.01 Left middle

frontal gyrus

10/46

6 1216 �1 �14 13 L 12.54 Left thalamus

7 1216 15 �1 24 R 22.23 Right caudate

8 1216 20 12 58 R 20.4 Right middle

frontal gyrus

8



Fig. 6. Volume thresholded cluster of activation due to outcome differences, black numbers indicate z-coordinate, white numbers indicate area.
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0.04) did not differ significantly for wins or losses (tpaired(18) =

1.07, NS).

The behavioral results of selecting the preferred, even, or

worst response during the first eight trials versus the last eight

trials in a trial block were correlated with the model parameters

obtained from each subject to determine whether the model

parameter variations predicted variations in observed behavior.

A larger value of learning parameter for wins, b+, was associated

with more frequent selection of the preferred response during the

first eight (r = 0.62, P < 0.01) and the last eight trials (r = 0.65, P

< 0.01) of a trial block and with a reduced frequency of the worst
response during both parts of the trial block (r = �0.62, P < 0.01

and r = �0.50, P < 0.01). No corresponding correlations were

found for the variability of the learning parameter for losses. In

comparison, slower temporal discounting for losses (a�) was

associated with fewer selection of the worst response during both

parts of the trial block (r = �0.49, P < 0.05 and r = 0.59, P <

0.01). In combination, whereas variability of the learning param-

eter for wins appears to be critical for the acquisition of the

preferred response, the variability of the temporal discount pa-

rameter for losses explained variability in avoiding the worst

response.
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Several areas showed significant activation differences between

winning, tying, and losing trials (Table 3). Specifically, bilateral

striatum and thalami showed significantly higher activation during

winning trials relative to losing trials (Fig. 6). Similarly, both

posterior parietal cortex (BA 7) and inferior and dorsolateral

prefrontal cortices (BA 10/46) were more active during winning

versus losing trials (Fig. 6).
Discussion

In repeated decision-making situations, the ventrolateral pre-

frontal cortex was more active after the association between actions

and outcomes changed and when subjects acquired the advanta-

geous action. A trend detection model was able to explain the time

course of activation in this area. This model was based on a value

function derived from the temporal difference model with param-

eters for both rewarding and punishing events. In comparison,

bilateral striatum and thalami, posterior parietal cortex and inferior

as well as dorsolateral prefrontal cortices activated differentially as

a function of outcome. This dissociation of trend detection and

reward-related processing during decision-making is consistent

with the notion that decision-making involves separable processes

that are implemented across different brain areas.

The current findings support the hypothesis that the inferior

prefrontal cortex, which includes both ventromedial and ventrolat-

eral prefrontal cortices, is critical for the acquisition of advanta-

geous actions during the RPS task. Moreover, the degree to which

these processes are translated into observable actions may depend

on the link between assessment, planning, and motor execution in

the pallidum, an area that is critical for conditional learning

(Robbins et al., 1989). The current results are consistent with

those previously reported for probabilistic reversal learning (Cools

et al., 2002) and sequence detection (Huettel et al., 2002). The

adjustment process during the RPS task may recruit areas that are

involved in reward-related processing, for example, the medial or

orbitofrontal cortex (O’Doherty et al., 2001, 2003a), and in

acquisition of rules related to successful outcome, which may be

represented in the ventrolateral prefrontal cortex (Passingham et

al., 2000).

The role of the inferior prefrontal cortex in the RPS task is

consistent with findings by others who propose that the inferior

prefrontal cortex may develop a moment-to-moment model for

patterns of events (Huettel et al., 2002). Computing trends via

estimating time-dependent variability is a convenient way of

determining a number of different aspects of reward-related

processes. In animal experiments, spatial foraging for food has

been sensitive to both the mean and variance in reward distribu-

tions (Real, 1991). Moreover, avoidance of options during deci-

sion-making situations with uncertain outcome has been related to

their increased outcome variability (Rode et al., 1999), which has

resulted in the proposition that the action selection in decision-

making situations is influenced primarily by expected outcome

and outcome variability. The current finding provides a detailed

view of the potential process that is carried out by the inferior

prefrontal cortex. The computations for the trend detection

function, which is based on computing the outcome variability,

can be performed easily online, that is, the neural structure may

keep a representation of changing trends during the task to guide

action selection. For example, multiplicative neuron units have

been described as part of dendro-dendritic interactions (see for
review Schmitt, 2002) or during the computation of visual

coordinate systems in the parietal cortex (Salinas and Abbott,

1996). Therefore, implementation of trend detection based on an

RMS-type procedure may be carried using local recurrent con-

nection circuits in the inferior prefrontal cortex. This process

would also explain the parametrically increased activation in this

area to ‘‘runs’’ of similar stimuli in a simple choice response task

(Huettel et al., 2002).

The temporal difference model originally provided a neural-

based conceptualization of stimulus– reward processing. This

model has also been used to account for changes in the stimu-

lus–reward relationships in decision-making situations (Egelman

et al., 1998). Moreover, BOLD fMRI activation changes were

consistent with predictions by the temporal difference model in

ventral striatum and orbitofrontal cortex during acquisition of

appetitive conditioned stimuli (O’Doherty et al., 2003b) and in

the striatum during the expectancy violation of positive and

negative stimuli (McClure et al., 2003). The current model is

based on a Mackintosh extension of the Rescorla Wagner rule (for

a review, see Pearce and Bouton, 2001; Wasserman and Miller,

1997), which accounts for most cases of cue competition, acqui-

sition, extinction, discrimination, conditioned inhibition, contin-

gency effects, and the US-preexposure effect. The Rescorla

Wagner rule treats extinction as unlearning and therefore does

not predict external inhibition, spontaneous recovery, or reminder-

induced recovery, and falls short in predicting such phenomena as

latent inhibition. The acquisition of the advantageous response in

this task falls within the category of Thorndikean instrumental

conditioning (Wasserman and Miller, 1997), which is fundamen-

tally tied to the notion of temporal contiguity (the delay between

stimulus and outcome) and contingency (the characteristics of the

joint probability of stimulus and outcome). Whereas the former

was kept constant in this experiment, the latter is a combination of

the subject’s response and the computer-preset outcome relation-

ship, which was examined here by creating a subject-specific

implementation of the temporal difference model. All model

parameters were found to be necessary to significantly predict

the subjects’ responses as well as inter-subject’s response variabil-

ity. The trend detection extension of the temporal difference model

provided here allows one to quantify the subject-specific ability to

detect trend changes when acquiring contingency rules (‘‘what

follows what when things change’’). This process is extremely

important and ubiquitous because stimulus–outcome associations

change frequently in daily life.

The somatic marker hypothesis (Bechara et al., 1997; Damasio,

1996), the Log-likelihood model (Gold and Shadlen, 2001, 2002),

and the prediction error or temporal difference model (Schultz et

al., 1997; Suri and Schultz, 1999) may represent neural system

implementations to differentially process affective states, compute

contingencies and contiguities, and to optimize decision-making

in the presence of complex stimulus–outcome relationships.

Whereas the somatic marker hypothesis is based on the brain-

representation of the condition of the body as it relates to

anticipated outcomes of actions (Craig, 2003), the Log-likelihood

model and temporal difference model are ways of computing a

value associated with a stimulus or the outcomes associated with

an action. Although the specific implementations differ, that is, the

Log-likelihood model is based on Bayesian adjustments versus the

temporal difference model, which is a difference equation, the

basic goal accomplished by these models is similar. A value is

associated with each action via computational models based on
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repeated exposure to advantageous and disadvantageous out-

comes. Both heuristic (Wasserman and Miller, 1997) and proba-

bilistic (Dayan et al., 1995; Egelman et al., 1998) rules have been

proposed for the selection among competing actions based on the

computed relative value. Some investigators have recently extend-

ed the temporal difference model to include punishing as well as

rewarding events (Daw et al., 2002) and have suggested that

dopamine and serotonin may act as opponent processes in this

manner. The findings of the temporal difference model and the

trend detection process in this investigation support the notion that

punishing (losing) events may have a stronger effect on the

adjustment of the value function than rewarding (winning) events,

which is consistent with the general shape of the value function

that has been established in the classical psychology decision-

making literature (Tversky and Kahneman, 1981).

Previous investigations have revealed a success/failure-depen-

dent activation pattern in the prefrontal cortex (Elliott et al., 1999,

2000b), anterior cingulate (Elliott and Dolan, 1998), insula (Critch-

ley et al., 2001), amygdala (Kahn et al., 2002), and parietal cortex

(Paulus et al., 2001). Some investigators have suggested a medio-

lateral gradient of enabling versus suppressing actions associated

with favorable outcomes (Elliott et al., 2000a) or positive and

negative outcomes (O’Doherty et al., 2001); however, others

(Critchley et al., 2001) have suggested that the degree of anticipa-

tion and associated arousal may mediate activation differences in

these areas. The activation-related differences between winning and

losing trials in this task will need further study using an event-

related paradigm to differentiate the outcome-specific from the

anticipatory modulation of the hemodynamic response.

There are several limitations to the current study. A continuous

fixed trial time design was used here to observe trend-related

changes during this task. Therefore, it was not possible to obtain

activation patterns specific to the anticipation or the evaluation of

positive or negative outcomes. Moreover, other processes that are

involved in this task such as mentalizing (Gallagher et al., 2002), as

defined by the ability to explain and predict the behaviors of others

by attributing them to independent mental states, working memory,

or strategy selection could not be disambiguated with this experi-

mental design. Lastly, although several subjects reported that the

computer responded non-randomly, no significant neural activation

differences were observed in this group (data not shown). There-

fore, a larger group of subjects may be needed to extract subject-

related variability in the activation pattern.

Various aspects of decision-making can be dysfunctional in a

number of neuropsychiatric disorders (American Psychiatric As-

sociation, 1994; Mogg et al., 1991; Rahman et al., 1999, 2001)

including substance-related syndromes (Bechara et al., 2001;

Grant et al., 2000; Rogers et al., 1999). Behavior of some

substance-dependent subjects is similar to that of patients with

bilateral ventromedial prefrontal cortex lesions, and characterized

by selecting choices that are associated with immediate benefit,

even if these choices yield long-term negative future consequences

(Bechara and Damasio, 2002). Dysfunctions of the ventromedial,

ventrolateral, and dorsolateral prefrontal cortex have been ob-

served in stimulant-dependent subjects (London et al., 2000;

Paulus et al., 2002; Volkow and Fowler, 2000). Others have

shown increased activation of the inferior medial and lateral

prefrontal cortex in substance-dependent subjects in response to

cues that elicit craving responses (Breiter et al., 1997; Childress et

al., 1999; Grant et al., 1996; London et al., 2000; Tapert et al.,

2003; Volkow and Fowler, 2000; Wang et al., 1999). Moreover, a
longer period of abstinence in substance-dependent subjects was

associated to reduced activation of the inferior prefrontal cortex

(Volkow and Fowler, 2000). This altered functionality of the

inferior prefrontal cortex in substance-using subjects may result

in an inadequate computation of trend detection with respect to

drug-related experiences. Therefore, dysfunctions in the adjust-

ment of one’s action when the association between action and

outcomes changes could explain subjects’ transition from the

initiation to the maintenance of using substances despite the

development of adverse consequences.
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