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Physiological fluctuations are often a dominant source of noise in functional 

magnetic resonance imaging (fMRI) experiments, especially at higher field strengths.  

A number of methods have been developed for the reduction of physiological noise in 

fMRI experiments. These include image based retrospective correction 

(RETROICOR), k-space based retrospective correction, and navigator echo based 

correction.  At present the application of these methods has been focused primarily on 

experiments using blood oxygenation level-dependent contrast.  Perfusion-based fMRI 

using arterial spin labeling (ASL) is becoming increasing popular because of its 

potential to better localize functional activation to the sites of neuronal activity.  Thus, 

in this thesis we investigate four extensions of RETROICOR to ASL.  While 



significant improvement in statistical power was observed for each method, we found 

the greatest improvement resulted when 1) physiological noise is estimated separately 

for tag and control images and 2) the contribution of physiological fluctuations during 

the tagging process to noise in the tag images is included.   

 



1. INTRODUCTION 
 
 

Physiological fluctuations are often a dominant source of noise in functional 

magnetic resonance imaging (fMRI) experiments, especially at higher field strengths 

{Turner, Jezzard et al. 1993}.  Physiological noise in fMRI is manifested as inter-

image variation.  Since this variance can be on the order of the signal of interest, 

statistical sensitivity to functional activity can be reduced.  Cardiac and respiratory 

activity have been shown to be the primary sources of physiological noise.  Due to the 

complexity of brain physiology, understanding the contribution of physiological 

activity to brain imaging remains a challenge.   

Cardiac related image intensity fluctuation can be caused by pulsatility of blood 

flow in the brain, which can result in vessel pulsation, cerebral spinal movement, and 

tissue deformation.  Investigations into the properties of cardiac noise have found that 

it is largely localized in the brain in regions that are near vessels {Dagli, Ingeholm et 

al. 1999}.  Since MRI is a measure of the magnetization of the imaged tissue, inflow 

of blood can introduce signal perturbations in parts of tissue near vessels.  While this 

mechanism may explain some of the cardiac related noise, a complete understanding 

of these effects is lacking. 

In addition, Magnetic field fluctuations that result from thoracic cavity expansion 

and bulk head movement during respiration can also cause undesired image artifacts.  

In contrast to cardiac related noise, respiratory noise has largely been shown to affect 

the image globally {Noll and Schneider 1994}.  However, localized inter-image 



variations around the ventricles and brain edges have also been reported {Glover, Li et 

al. 2000}.   

A number of methods have been developed for the reduction of physiological 

noise in fMRI experiments. These include image based retrospective correction 

(RETROICOR) {Glover, Li et al. 2000}, k-space based retrospective correction 

(RETROKCOR) {Hu, Le et al. 1995}, and navigator echo based correction {Pfeuffer, 

Van de Moortele et al. 2002}.  At present the application of these methods has been 

focused primarily on experiments using blood oxygenation level dependent (BOLD) 

contrast.  However, perfusion-based fMRI using arterial spin labeling (ASL) is 

becoming increasing popular because of its potential to better localize functional 

activation to the sites of neuronal activity {Luh, Wong et al. 2000}.  In this work we 

investigate methods for the reduction of physiological noise in ASL experiments.  We 

begin by reviewing the current physiological noise correction methods. 

 

1.1.1 RETROICOR 

This method assumes that physiological noise induces fluctuation in the MR image 

time series.  Physiological data collected during the imaging sequence used to form a 

low order Fourier series expansion with cardiac and respiratory phase terms.  After the 

coefficients of the Fourier series are determined by least squares for each pixel time 

series, the modeled physiological noise is subtracted out.  The resultant time exhibits 

significantly reduced cardiac and respiratory noise {Glover, Li et al. 2000}. 

 

1.1.2 RETROKCOR 



This method employs the same basic concept as RETROICOR except that the 

Fourier series is fit to data in the k-space time series, not image space {Hu, Le et al. 

1995}.  This method showed useful results in correcting respiratory induced effects.  

However, this method is limited by signal to noise ratio (SNR) and since the SNR is 

greatest at the center of k-space only time series data near the center of k-space can be 

fit to the Fourier series.  As a result, only low order spatial correction can be made 

{Glover, Li et al. 2000}. 

 

1.1.3 Navigator Methods 

Navigator methods use information from an auxiliary echo and the center of k-

space of the image to quantify off resonance noise.  This method was introduced by 

Pfeuffer et al. as dynamic off-resonance in k-space (DORK) correction {Pfeuffer, Van 

de Moortele et al. 2002}.  The DORK correction method reduces time varying zero 

and first order phase shifts for EPI imaging.  The method assumes that uniform (across 

each slice) frequency and phase changes result from respiration (due to changes in the 

magnetic field that cause NMR phase shifts). The phase information is acquired from 

a navigator echo in addition to data at the center of k-space.  Since this method only 

samples a projection of the brain, it lacks the ability to localize the source of the noise.  

As a result, its application can result in incomplete correction.   

 

1.1.4 Estimation of Respiration induced Noise from undersampled multislice fMRI 

data 



Most fMRI experiments sample brain images at a sampling rate that is the less 

than the Nyquist frequency for respiratory and cardiac fluctuations.  As a result, it is 

difficult to estimate the contribution of physiological fluctuations since any such 

contribution will be aliased into lower frequencies.  Aliased signals from higher 

frequency signals can also overlap activity related signals, thereby making it difficult 

to detect significant activation.  The method introduced by Frank et al {Frank, Buxton 

et al. 2001} uses multislice acquisition to critically sample respiratory induced noise.  

By reordering the multislice image data using temporal rather than spatial ordering, 

unaliased respiratory noise is estimated regardless of image repetition time (TR).  For 

example, if 8 slices were acquired in a TR of 2 seconds, the effective slice sampling 

rate is (2 sec)/(8 slices) = 0.25 sec.  Although the pixel time series is sampled at a 2 s 

TR, reordering the slices temporally (in the order they were acquired) results in a 

sampling rate that is high enough to sample physiological fluctuations. By detecting 

global noise in the reordered image time series, this method has been shown to 

significantly reduce respiratory related noise.  However, since cardiac related noise is 

more localized in the brain image, this method is less successful in reducing cardiac 

related noise.  

 

1.2 Application of physiological noise correction to ASL 

Published reports of the application of the current physiological noise correction 

schemes to ASL have been particularly limited.  Among the reviewed correction 

methods, only DORK has been explicitly used to correct respiratory induced noise in 



perfusion fMRI image time series {Pfeuffer, Adriany et al. 2002}.  However, a 

comprehensive description of the application of DORK to ASL was not given.   

In this work, we investigate the use of RETROICOR to correct physiological noise 

in ASL images.  Although we had the option to investigate the other reviewed 

correction schemes, we chose RETROICOR because 1) it required no changes in the 

MR imaging sequences whereas DORK requires a navigator echo, 2) it provided 

significant correction of both cardiac and respiratory noise whereas the other 

correction methods were unsuccessful at removing localized cardiac noise.  

 

1.3 Outline of the thesis 

In this thesis, we investigate the use of RETROICOR to correct physiological 

noise in ASL images.  We begin in section 2 with a description of the basics of BOLD 

and ASL imaging.  We then describe the BOLD and ASL general linear model 

(GLM).  Since our perfusion based noise correction methods are based on 

RETROICOR, it is important that we achieve similar performance in noise correction 

to that of published results.  Consequently, we describe BOLD based physiological 

noise correction.  We then introduce four extensions of RETROICOR to estimate 

cardiac and respiratory related noise in ASL.  

Section 3, describes the imaging and physiological data collection methods.  This 

section will also cover how we assessed the performance of BOLD and ASL 

correction of physiological noise.  We accessed BOLD correction mainly by using 

similar methods employed in {Glover, Li et al. 2000}, whereas ASL correction was 

mainly assessed using the F statistic and correlation analysis.    



Section 4 presents the results of BOLD and ASL correction of physiological noise.  

The primary objective of showing the BOLD specific results will be to compare our 

noise correction results to that of published results in {Glover, Li et al. 2000}.  We 

show that method 4 provided the best improvement in detecting functional perfusion 

activity.   

Section 5 summarizes the results of thesis and discusses the main findings.  Finally 

section 6 suggests area of future work. 

Earlier versions of the work presented in this thesis have appeared in {Restom, 

Behzadi et al. 2004}.



2. THEORY 

 
2.1 BOLD Imaging 
 

BOLD based fMRI has become an indispensable tool for the studies of the 

working human brain.  The BOLD signal reflects local changes in deoxyhemglobin 

content, and is a complex function of dynamic changes in cerebral blood flow (CBF), 

cerebral blood volume (CBV), and the cerebral metabolic rate of oxygen (CMRO2), 

where CBF and CMRO2 are considered to be the variables most directly linked to the 

neural activity.  Although efforts have been developed to estimate this quantities, 

quantitative interpretation of BOLD fMRI remains difficult {Buxton 2002}. 

 

2.2 Arterial Spin Labeling (ASL) 

In contrast to BOLD imaging, ASL has the ability to quantify CBF and also has 

the potential to better localize brain activity {Luh, Wong et al. 2000}.  In an ASL 

experiment the measured time series is composed of tag images in which the 

magnetization of inflowing arterial blood is inverted and control images in which the 

inflowing blood magnetization is relaxed {Detre, Leigh et al. 1992}.  Tagging is done 

with an inversion or saturation RF pulse in a plane that is positioned in a region that is 

proximal to the imaging slice.  The difference between the control and tag images 

yields an image that is proportional to perfusion {Detre, Leigh et al. 1992}.  In 

contrast to BOLD imaging which uses deoxyhemglobin as a contrast agent, ASL fMRI 

uses magnetically tagged water as a contrast agent.   

 



2.3 BOLD General Linear Model 

In a BOLD weighted fMRI experiment, the measured time series y[n] can be 

modeled as the sum y[n]=αx[n]+ s[n]+ p[n]+e[n]  of a functional activation term 

comprised of a regressor x[n] with amplitude α , a term s[n] representing nuisance 

terms such as a constant offset and linear drift,  a term p[n] representing physiological 

noise, and a term e[n] representing additive noise (see Figure 1).  For further analysis, 

it is useful to describe the measured time series with a general linear model (GLM) of 

the form  

nPcSbxy +++= α      [1] 

where y is the  measurement vector,  is a 1×N x 1×N  functional regressor vector, S  

is a  matrix comprised of l nuisance model functions,  is an l  vector of 

nuisance parameters,  is an 

l×N b 1×

P mN ×  matrix of m physiological noise regressors, c  is a 

 vector of physiological noise parameters, and n  is a 1×m 1×N  additive noise vector 

with covariance matrix .  To simplify the presentation, we have assumed that the 

functional regressor is a vector, such as a smoothed boxcar waveform.  This is a 

standard assumption for most block design experiments where the emphasis is on 

detection of functional activation.  We define x  as a smoothed boxcar function, 

, where  is a design matrix whose columns are made from shifted versions 

of the stimulus pattern and h  is the modeled hemodynamic response in vector form.  

Here we model h  as a the gamma density function of the form  
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where , 3=n s2.1=τ ,  {Buxton 2002}.  In event-related fMRI experiments 

where the emphasis is on estimation of the hemodynamic response rather then 

detecting a response,  becomes the vector that is solved for in the GLM {Liu, Frank 

et al. 2001}.  Physiological noise correction methods such as RETROICOR estimate 

the physiological noise regressors either through the use of external physiological 

measurements or navigator scans. The physiological noise parameters are then 

estimated from the measured data.  

st 1=∆

h

 

2.3.1 Noise correction with BOLD general linear model 

The BOLD general linear model can be re-written in the form  

nZay +=       [3] 

where a and [ ]TTT cbα= [ ]PSxZ = .   The least squares estimate is 

.  The corrected time series is then given by  ( ) yZZ TT 1−
Zâ =

     cPyy ˆ−=)      [4] 

where .  Here we defineaAc ˆˆ = [ ]10A )(1 rq−×=  where q is the number if rows in  

and r is the number of rows in c . 

a

 

 

2.4 ASL General Linear Model 

The analysis framework we describe in this paper is applicable to arbitrary 

orderings of tag and control images, but in order to simplify the presentation we 

assume that the images are interleaved.  



To construct the GLM for an ASL experiment, it is useful to introduce the concept 

of ideal tag and control time series vectors, tagy~  and cony~ , which are defined as the 

time series that would be obtained if a pair of tag and control images was acquired at 

every time point [8].  The GLM for these 1×N  vectors is  

  
conconconconconcon

tagtagtagtagtagtag

ncPSbxy

ncPSbxy
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+++=

α

α
~

~
   [5] 

where the tag and control subscripts reflect the fact that the functional amplitudes, 

nuisance terms, physiological noise terms, and additive noise may differ between the 

tag and control states. In addition, the number of physiological noise regressors may 

differ for the tag versus control states, so that  and  may have different 

dimensions. We model the interleaving process by multiplying the ideal vectors by 

downsampling matrices to obtain the measured tag and control time series 
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where  and  are tagD conD Np×  downsampling matrices that pick out every even 

sample and odd sample, respectively, and 2/Np = .  Equations 5 and 6 may be 

combined to yield 
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where we have made the reasonable approximation that the downsampled nuisance 

matrices  and D  span the same space and can thus be replaced by a single 

matrix S .  

SDtag

′

Scon

 

2.5 Noise Correction with the ASL General Linear Model 

In this thesis, we examine the effect of different assumptions about P , , 

, and c  on the physiological noise removal process.  In the most obvious 

application of RETROICOR to an ASL experiment, we assume that the physiological 

noise regressors and parameters are the same for both tag and control images. This is 

equivalent to setting 

tag conP

tagc con

PPP == contag  and c contag c= .    The next level of complexity 

is to assume that the physiological noise regressors are the same but that the 

parameters can differ, i.e. contag cc ≠ .  We refer to noise correction with these two 

sets of assumptions as Methods 1 and 2.  

The physiological noise regressor matrix  for methods 1 and 2 accounts for the 

impact of physiological variations on the acquisition of the image. In an ASL 

experiment, we hypothesize that there may be an additional effect of these variations 

on the tagging process. For example, the efficiency of the magnetic inversion can 

depend on the velocity of blood in the tagging region, and can therefore be affected by 

cardiac pulsations. To model this effect, we expand  to include a matrix 

P

tagP P′  of 

regressors reflecting the physiological parameters at a time that is ∆T  seconds prior to 

the image acquisition, so that [ ]PPP ′=tag .  For a standard ASL experiment, we 



would expect T∆  to be near the inversion time TI of the experiment. For a 

quantitative ASL experiment (e.g. QUIPSS II) {Wong, Buxton et al. 1998} with 

additional post-inversion saturation pulses, we would expect T∆  to lie between the 

inversion time TI  and the saturation time TI2 12 TI−  , i.e.  ( ) 21 TITTI ≤∆≤2TI − .   
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We define methods 3 and 4 as extensions of methods 1 and 2, respectively, with 

the expanded  matrix.  In method 3, the physiological noise is assumed to affect 

the tag and control image acquisitions equally, with an additional set of parameters to 

reflect the effect on the tagging process, so that T

= cc  where  is 

the vector of parameters for the regressors in .  For method 4, the noise can affect 

the tag and control image acquisitions independently, so that  

where tagc ≠~ .    

The general linear model for each of the four methods can be written as  

y =~       [8] 

where ; [ ]TT
con

Tyy =~ [ T
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X tag
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 with ,  [ ]TOTTOTSXZ = STOT , and  and 

 for each method are defined in Table 1.  An illustrative summary of all four 

methods is shown in figure 2.   
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The statistical significance of functional perfusion activation is assessed by testing 

whether the difference tagcon αα − of the control and tag amplitudes is significantly 

different from zero.  This can be accomplished with an F-statistic of the form 

( )
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where a ;  ( ) yZZZ ~ˆ
1 TT −

= [ ])2(111 −×−= q0A ; and q is the number of rows in a .  

The F-statistic has the useful property of explicitly taking into account the reduced 

degrees of freedom due to adding more physiological noise terms {Liu, Wong et al. 

2002}. 

 

2.6 Physiological Noise Model 

The matrix  is composed of physiological noise regressors. As defined in 

{Glover, Li et al. 2000}, the n

P

th row of the matrix is given by:  

[ ])2sin()sin()2cos()cos()2sin()sin()2cos()cos( nnnnnnnn RRRRCCCC  [10] 

where C ][ncn ϕ= is the cardiac phase, ][nR rn ϕ=  is the respiratory phase, and n  

indexes the image data acquired at time t nTR= .  The columns of  thus form the 

terms for a 2

P

nd order Fourier series expanded out in terms of cardiac (columns 1-4) and 

a 2nd order Fourier series expanded out in terms of respiratory phase (columns 5-6).   

To motivate the use of a Fourier expansion, it useful to look at the cardiac cycle as 

an example.  Although the time interval between consecutive heartbeats may differ 



during the experiment, each signal change is assumed to be related to the phase of the 

cardiac cycle.  However, since the cardiac signal is measured at the index finger, 

resultant signal changes in brain voxels may be time shifted to the cardiac phase.  A 

Fourier series expansion allows for this time shift to be estimated on a per-voxel basis.  

It has been reported that a 2nd order Fourier expansion is sufficient physiological noise 

estimation {Glover, Li et al. 2000}.  

Following Hu {Hu, Le et al. 1995}, cardiac phase is defined as  

                                               
12

12][
tt

tt
nc −

−
= πϕ     [11] 

where t  is the time at which the image is acquired, t  is the time of the cardiac peak 

immediately prior to t , and t  is the time of the cardiac peak immediately following 

.  Assuming that the cardiac phase advances linearly, this method scales the cardiac 

signal to a number between 0 and 2π {Glover, Li et al. 2000}.  Example data showing 

the calculation of cardiac phase are shown in figure 3. 
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where  denotes a integer rounding operation,  is the amplitude of the signal 

from the respiratory belt normalized from 0 to  (maximum of ), and  is 

a histogram of the number of occurrences of respiratory amplitude values that occur at 

bin value .  Bin values span  thru  with intervals of .  
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The term  is the sign of dR , with a   value of 1 during inspiration and 

–1 during exhalation.  To calculate sgn( , we used a sliding window that spans 

two consecutive respiratory signal peaks.  A value of -1 is given to all data points 

preceding the minimum data point, whereas a value of +1 is given to the rest of the 

points within the window.  This process is continued for each succeeding window.  

When the sgn(  value is positive (inhalation), 

)/sgn( dtdR

)/ dtdR

dt/

dR )/ dt

ϕr[n]spans 0 to π, whereas when 

 is negative (exhalation), )dt/sgn(dR ][nrϕ  is negated.  This method assumes that B0 

fluctuation are proportional to the extent of inhaling or exhaling rather than the onset 

of max inspiration {Glover, Li et al. 2000}.  Example data showing the calculation of 

respiratory phase are presented in figure 4. 

  



3. METHODS 
 
 
3.1 Imaging 

Four healthy adult male volunteers participated as subjects in this study.  All 

experimental imaging data were collected on a Varian 4T whole body system with 

head transmit coil and a surface receive coil (Nova Medical) placed under the occipital 

lobe.  Three oblique 8mm slices through the calcarine sulcus were imaged while the 

subject was shown a full-field, 8 Hz radial flickering checkerboard (block design 

comprised of 4 periods of 30/30 seconds on/off).  ASL data were acquired using a 

PICORE-QUIPSS II {Wong, Buxton et al. 1998} sequence with an echo planer 

imaging (EPI) readout, interleaving of tag and control images, and TR = 2s, repetitions 

= 130, TI1/TI2 = 700/1400 ms, TE = 27 ms, θ = 90, FOV 24cm, 64x64 matrix.  

BOLD-weighted resting state data were acquired using an echo planar sequence with 

TR =250 ms, repetitions = 1040, TE = 27 ms, θ = 90, FOV 24cm, and 64x64 matrix.  

Image data were co-registered to minimize the effects of subject motion {Cox 1996}.   

 

3.2 Physiological Data Collection 

Cardiac pulse and respiratory effort data were monitored using a pulse oximeter 

(NONIN) and a respiratory effort transducer (BIOPAC), respectively.  The pulse 

oximeter was placed on the subject’s right index finger.  The respiratory effort belt 

was placed around the subject’s abdomen. Physiological data were sampled at 40 

samples per second using a multi-channel data acquisition board (National 



Instruments).  In addition to the physiological data, scanner TTL pulse data (10 ms 

duration, 5 volt pulse per slice acquisition) were recorded at 1 kHz.  The TTL pulse 

data were used to synchronize the physiological data to the acquired images.  

 
 
3.3 Data Analysis 
 
 
3.3.1 BOLD weighted images 
 

The RETROICOR algorithm as described in section 2 was applied to the resting 

state BOLD data acquired at a TR of 250 ms. To assess the overall effectiveness of the 

algorithm, the standard deviation in each voxel was computed for the resting state 

times series before and after noise correction. In addition, the power spectrum of each 

time series was computed and the average spectral energies in 0.1 Hz frequency bands 

around the respiratory peak and the cardiac peak were calculated.   Respiratory and 

cardiac peaks ranged between 0.2 to 0.4 Hz and 0.9 to 1.1 Hz, respectively, across 

subjects.  To evaluate the performance of RETROICOR with a TR more similar to that 

used in typical fMRI studies, the TR = 250 ms BOLD data were downsampled to form 

time series with a TR of 2000 ms. These downsampled data were then analyzed in a 

manner similar to the original data.   

 

3.3.2 Perfusion weighted images 

In order to assess the relative performance of the different methods, the F-statistic 

was computed for a general linear model in which  (as defined in section 2.3) is 

treated as the regressor of interest and the physiological noise terms are treated as 

x



nuisance terms {Liu, Wong et al. 2002}.  In addition, zeroth and first order Legendre 

polynomials are included as constant and linear nuisance terms.   

F-statistics for methods 1 through 4 described in section 2.5 were calculated for 

each pixel within a region of interest (ROI) defined to encompass the visual cortex.  

To determine the optimal delay ∆ to use with methods 3 and 4, the F-statistic was 

calculated at delay times varying between 0 s to 1.5 s at intervals of 25ms for 

uncorrected pixels that showed significant perfusion (p < 0.05).  The optimal ∆’s for 

method 3 and 4 were chosen to maximize the average F-statistic over each slice. 

To compare the performance of each method, we evaluated the number of pixels 

that exceeded a range of threshold F statistic value.  The threshold F statistic values 

corresponded to p values ranging from 0.00 to 0.05.  These were calculated for each 

method and the uncorrected data.   

Since correlation analysis is often used in fMRI {Buxton 2002}, we also evaluated 

each of the noise correction methods by calculating correlation coefficients. For each 

voxel, a perfusion time series was computed from the running difference of control 

and tag images {Wong, Buxton et al. 1997} both prior to and after noise correction.  

These time series were then correlated with a smoothed boxcar reference function 

defined in section 2.3. 



4. RESULTS 

 

4.1 BOLD data 

Example data showing estimated cardiac and respiratory components from on 

voxel of the short TR BOLD data are shown in figure 5. To compare the estimated 

cardiac and respiratory components to the measured physiological signal during the 

experiment, both measured cardiac and respiratory signals (downsampled to 4 Hz) are 

also shown.  The estimated respiratory component is similar to the measured signal. 

There is a delay between the measured cardiac signal and the estimated cardiac 

component.  This delay is on the order of 0.4 s.   

Respiratory and cardiac-related spectral components of the short TR BOLD data 

are shown in figures 6 and 7, respectively. The data shown are for subject 1, with 

similar results seen for the other subjects.  Both respiratory and cardiac components 

were significantly attenuated by the RETROICOR algorithm.  Cardiac components are 

extensively localized to gray matter sulci and regions near large vessels, whereas 

respiratory components are primarily located on the brain edges. Figures 8 and 9 show 

an example Fourier spectrum and time series, respectively, from a selected voxel. As 

shown by Figure 8a, the application of the RETROICOR algorithm clearly reduces 

both cardiac and respiratory related components. For reference, the spectra of the 

measured physiological data are also shown in 8b and 8c.  The corrected time series in 

Figure 9 shows a 30% reduction in the standard deviation as compared to the 

uncorrected time series.  



Spectral component images and example spectra for the resampled BOLD data 

(TR = 2000 ms) are shown in Figures 10 and 11, respectively.  Figure 10 is analogous 

to figures 6 and 7 for the short TR data.  However, since the cardiac components are 

aliased into the range that overlaps the respiratory frequency band, only one figure is 

shown.  The difference images shown in the third column of figure 10 show a 

significant reduction in localized regions such as gray matter sulci along the brain 

edges.  The example Fourier spectrum in figure 11 demonstrates a clear reduction of 

the physiological components. Physiological data resampled to the 0.5 Hz image 

sampling rate (second row in Figure 11) show that the cardiac component aliases 

down to the same frequency range as the respiratory components.  Consistent with the 

data shown in figure 9, the corrected time series in Figure 12 shows a 30% reduction 

in the standard deviation as compared to the uncorrected long TR data. 

 

4.2 ASL data results 

F statistics were assessed for delay ranging from 0 ms to 1500 ms. Results shown 

in figure 13 are for subject 1.  Method 4 was used as the mode of correction when 

searching for the optimal delay time ∆, with similar results observed for method 3.  

The average F statistic of ROI (section 3.3.2) peaked at delay times of 850 ms, 900 ms 

and 950 ms for slices 1, 2, and 3, respectively.  Slice to slice delay time differences are 

consistent with the image acquisition delay of 50 ms. To show that the results are 

similar across subjects, figure 14 shows data averaged over all subjects.  The observed 

time to peak is consistent with that observed for subject 1.  A summary of the delay 

times used with methods 3 and 4 are shown in Table 2. 



To compare the proposed methods, Figure 15 shows the number of voxels (within 

an ROI) that have an F-statistic above a threshold corresponding to p-values between 0 

and 0.05.  For any given p value, method 4 provided the largest number of significant 

voxels.  It is also worth noting that method 3 is an improvement over method 1, 

indicating that the improvement due to the addition of the delay term is consistent for 

both methods 1 and 2.  The average performance over all subjects is shown in figure 

16.  The results are consistent with those for subject 1.   

To show the level of correction achieved by method 4, an example perfusion time 

series is shown in figure 17 for subject 1.  The selected voxel shown was chosen to 

show the greatest degree of correlation improvement.  Upon visual examination of the 

two perfusion time series, functional activation is clearly difficult to detect prior to 

correction.  The correlation maps of slice 1 for this subject were also significantly 

improved by method 4, as shown in figure 18.  Additional voxels that exceeded the set 

threshold after correction remained localized in a region that encompasses the visual 

cortical gray matter.  To compare the performance of the proposed methods in terms 

of the number of correlated voxels, figure 19 is a bar graph which shows the mean 

number of voxels across subjects that exceed the threshold of 0.4.  Consistent with the 

results in indicated in figure 16, method 4 provided the greatest improvement in 

correlated voxels.   

   



5. DISCUSSION 

 
5.1 BOLD weighted imaging 

As evidenced in figures 6, 7, and 10, cardiac and respiratory related noise have 

certain spatial characteristics.  Cardiac related spectral energy is localized to gray 

matter sulci and regions that are close to large vessels such as the sagittal sinus.  Since 

regions made up of primarily gray matter have a higher concentration of blood vessels, 

we expect the impact of cardiac pulsatility to be greatest in gray matter regions.  

Respiratory related noise, on the other hand, seems to be localized to the outer edges 

of the brain.  This effect may be caused by the occurrence of bulk head movement 

during respiration.   

The performance we achieved in BOLD imaging correction is quantitatively 

similar to that published in {Glover, Li et al. 2000}.  We achieved a reduction in 

cardiac and respiratory spectral components in both short and long TR BOLD imaging 

that is comparable to the published results.  Additionally, results in {Glover, Li et al. 

2000} report a 35% decrease in the standard deviation of long TR BOLD data after 

correction.  This is comparable to the 30% decrease that we report.  

 

5.2 Perfusion weighted imaging 

The observed improvement of method 2 when compared to method 1 is the first 

main finding of this thesis.  This indicates that physiological noise should be estimated 

for tag and control images separately.  In other words, the amplitude of physiological 

noise in tag images is different than that of control images.  Referring to the GLM 



described in section 2.5, this observation indicates that allowing for c ≠  is an 

important first step when estimating physiological noise in ASL. 

tag conc

The second main finding is that method 4 provided the greatest degree of 

physiological noise correction.  This observation supports the assumption behind 

methods 3 and 4, mainly that the process of tagging blood can be modulated by 

cardiac and respiratory activity.  In addition, the observed optimal delay time ∆ is 

consistent with the temporal range of the arterial bolus created by the QUIPPS II pulse 

sequence.       



6. AREAS OF FUTURE WORK 

 
Since tag images were found to effected by physiological noise differently than 

control images, it would be interesting to resolve the source of the noise.  Based on 

the ASL sequence we used, the effective TR between tag images is 4 s.  Due to 

aliasing of respiratory and cardiac components, this TR is clearly too high to 

resolve differences between cardiac and respiratory effects.  One possible method 

to resolve these differences would be to acquire only tag images at the shortest TR 

possible.  However, a shorter TR is limited by transit delay times between the 

tagged bolus and its arrival to the imaging region.  If we assume that tagged blood 

arrives at the larger vessels fast enough, then it may be possible to have a TR that 

is on the order of 300 ms. In addition, if the tagging process is modulated by 

cardiac and respiratory activity, a shorter TR may resolve whether cardiac 

pulsatility or respiratory modulation of the magnetic field has greater effect.    

Overall, this thesis has treated cardiac and respiratory effects as noise.  An 

alternative approach to treating cardiac and respiratory effects as noise would be to 

treat these effects as signals of interest.  Combining these signals with other fMRI 

data such as CBF, CBV, and CMRO2 signals may yield new light onto the 

understanding of brain physiology.   
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Method Assumptions TOTP  TOTc  

1 Identical noise parameters for 
tag and control image 
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Table 1. Summary of physiological noise regressors ( ) and physiological noise 

parameters ( ) 
TOTP

TOTc
 
 



  
 Delay time (∆) in ms  

Subject Slice 1 Slice 2 Slice 3 
1 850 900 950 
2 825 875 925 
3 775 825 875 
4 825 875 925 

 
Table 2.  Summary of estimated delay times (∆) that were used with methods 3 and 4 
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Figure 1.  Pixel signal model (Section 2.3) 
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Figure 2.   A simplified model of an ASL experiment.  The measured tag and control 
images are assumed to be the sum of a noiseless image plus the physiological noise 
occurring at image acquisition time ti.  The relative impact of the physiological noise 
on tag and control image acquisition is modeled by the constants c  and c , 
respectively. The possible effects of cardiac pulsations and respiration on the inversion 
process are included in the additional term for physiological noise at time t

tag con

i - ∆ with a 
weight tagc

con

.  In applying RETROICOR to ASL data, we consider 4 possible methods. 
In method 1 we assume that the noise affects the tag and control images equally 
(c = c ) and there is no delayed tag term (tag tagc = 0).  This can be considered to be 
the direct application of RETROICOR to ASL.  Method 2 allows for the possibility 
that the noise affects the tag and control images differently ( ≠ c ), while 
methods 3 and 4 are modified versions of 1 and 2, respectively, that include a delayed 
tag term (

tagc con

tagc ≠ 0).  



 

 
 
Figure 3.  Example showing calculation of cardiac phase (b).  Peak of the cardiac 
cycle is denoted by a green x in (a). Calculation of cardiac phase for image number 3 
is explained as follows:  The 3rd TTL pulse shown in (a) corresponds to image number 
3.  The difference between the time that image 3 is sampled and the time of the 
preceding cardiac peak is approximately 0.3 sec.  The difference in time between this 
cardiac peak and the following cardiac peak is approximately 1.2 sec.  Referring to 
equation 11, cardiac phase at image 3 equates to  

4.1
2.1
3.02]3[ == πϕc  



 
 
Figure 4.  Example showing calculation of respiratory phase (c).  Peak respiratory 
activity shown in (a) is roughly 80 % of maximum respiration during the collected 
time series.   Respiratory amplitude histogram is shown in (b).  Bin values in (b) span 

 thru  with intervals of 0 .  Calculation of respiratory phase for 
image number 3 is explained as follows:  The 3

max01.0 R maxR max01. R
rd TTL pulse shown in (a) corresponds 

to image number 3.  The respiratory activity during image 3 is 50% of maximum 
respiration during the imaging experiment.  The number of occurrences in bin values 
from 0.01 to 0.50 is 6704.  The sum of all occurrences is 11204.   is 
positive.  Referring to equation 12, respiratory phase at image number 3 is 

)/sgn( dtdR

9
11204
6704 .1=]3[ = πϕr    



 
 
Figure 5.  Example data from one voxel showing estimated (a) cardiac and (b) 
respiratory components estimated using BOLD physiological correction described in 
section 2.3.1.  In addition, measured (a) cardiac and (b) respiratory signals that are 
down-sampled to 4 Hz are shown. 



 
 
Figure 6.  Data for BOLD images acquired at a TR of 250 ms. Image intensity 
corresponds to the sum of the Fourier spectrum over a frequency band that 
encompasses the respiratory peak frequency ( 0 Hz05.03. ± ). Column 1 shows the 
uncorrected data, column 2 shows the corrected data, and column 3 shows the 
difference between the two.  Each row corresponds to data from one slice (slices 1 to 
3). All images are scaled equally. 
 



 
 
Figure 7.  Data for BOLD images acquired at a TR of 250 ms. Image intensity 
corresponds to the sum of the Fourier spectrum over a frequency band that 
encompasses the cardiac peak frequency ( 0 Hz05.09. ± ). Column 1 shows the 
uncorrected data, column 2 shows the corrected data, and column 3 shows the 
difference between the two.  Each row corresponds to data from one slice (slices 1 to 
3). All images are scaled equally. 
 



 
 
Figure 8.  Fourier spectra of a single voxel (BOLD, TR = 250ms).  (a) Spectra before 
and after noise correction.  (b) Spectra of the physiological data resampled to the 
image sample frequency.  (c) Spectra of the physiological data at the original sampling 
frequency of 40 Hz.   
 
 



 
 
Figure 9.  Example of resting-state (BOLD, TR = 250 ms) time series (a) before and 
(b) after correction.  The standard deviation of each time series is also shown. 
 
 
 
 
 
 
 
 



 
 
Figure 10.  Data for BOLD images resampled to a TR of 2000 ms. Image intensity 
corresponds to the sum of the Fourier spectrum over a frequency band that 
encompasses the respiratory peak frequency and aliased cardiac peak frequency 
( 0 ). Column 1 shows the uncorrected data, column 2 shows the corrected 
data, and column 3 shows the difference between the two.  Each row corresponds to 
data from one slice (slices 1 to 3). All images are scaled equally. 

Hz05.03. ±

 
 



 
 
Figure 11.  Fourier spectra of a single voxel (BOLD, TR = 2000ms).  (a) Spectra 
before and after noise correction.  (b) Spectra of the physiological data resampled to 
the image sample frequency.  (c) Spectra of the physiological data at the original 
sampling frequency of 40 Hz.   
 



 
 
Figure 12.  Example of resting-state (BOLD, TR = 2000 ms) time series (a) before 
and (b) after correction.  The standard deviation of each time series is also shown. 
 



 
 
Figure 13. F statistic versus delay time. The average F statistic of all voxels that 
exceed the threshold F statistic corresponding to a p value of 0.05 is shown.  Plots are 
normalized to maximum F statistic of each slice.  Average F statistic peaks at delay 
times of 850 ms, 900 ms and 950 ms for slices 1, 2, and 3, respectively. Data shown 
here are for subject 1. 
 



 
 
Figure 14.  F-statistic versus delay for selected voxels from all subjects.  The average 
F statistic of all voxels that exceed the threshold F statistic corresponding to a p value 
of 0.05 is shown.  Plots are normalized to max F statistic of each slice.  Average F 
statistic peaks at delay times of 750 ms, 800 ms and 925 ms for slices 1, 2, and 3, 
respectively.   
 
 



 
 
Figure 15.  Average number of voxels for subject 1 that exhibit an F statistic above a 
specified threshold.  p-values corresponding to thresholds range from 0.0 to 0.05. 
 
 
 



 
 
Figure 16.  Average number of voxels across all subjects that exhibit an F statistic 
above a specified threshold.  p-values corresponding to thresholds range from 0.0 to 
0.05. 
 
 
 
 
 



 
 
Figure 17.  Example of a perfusion time series (a) before and (b) after correction 
(method 4) for subject 1. Green dotted line denotes time during which the stimulus 
was shown to the subject.   
 



 

 
 
Figure 18.  Example of a correlation map overlaid on an average perfusion map for 
subject 1.  Results are shown before and after correction (method 4). Average cc and 
number of voxels above a threshold of 0.4 are summarized below each map.   
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Figure 19.  Average number of voxels that exceed a correlation threshold of 0.4 
across all subjects.  Results are shown for no correction and correction with methods 1 
– 4.   
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