Bioengineering 278 Magnetic Resonance Imaging

Winter 2009
Lecture 6

-Magnetic Resonance Angiography
- Phase Contrast
-Time of Flight
-Contrast Enhanced

Spins flowing through a gradient

Phase from Motion:

$$
\phi(t)=\int \gamma \vec{G}(t) \bullet \vec{r}(t) d t
$$

$$
=\int \gamma \vec{G}(t)\left(\vec{r}_{0}+\vec{V} t+1 / 2 \vec{A} t^{2} \ldots\right) d t
$$

$$
=\vec{r}_{0} \bullet \underbrace{\int \gamma \vec{G}(t) d t}_{\substack{\text { Zeroth } \\ \text { Moment }\left(\mathrm{m}_{0}\right)}}+\vec{V} \bullet \underbrace{\int \gamma \vec{G}(t) t d t}_{\substack{\text { First (flow) } \\ \text { Moment }\left(\mathrm{m}_{1}\right)}}+\vec{A} \bullet \underbrace{\int 1 / 2 \gamma \vec{G}(t) t^{2} d t}_{\substack{\text { Second } \\ \text { Moment }\left(\mathrm{m}_{2}\right)}}
$$

Flow Compensated Imaging

Phase Contrast MRA

- One image with velocity encoding positive
- One image with velocity encoding negative
- One direction of encoding at a time
-Display phase difference between images
-Phase difference subtracts out off-resonance and other phase effects

Maximum Intensity Projection

- Projection in which the maximum value along a set of parallel rays is projected onto a target plane
- MIP is in contrast to a conventional projection in which the sum or average value along each ray is projected onto the target plane
- In MRA, this results in a projection of vessels onto a plane, ideally without other anatomy obscuring vessels
- Typically, data are projected onto multiple rotated planes

Phase Contrast MRA

E. Wong, BE278, UCSD Winter 2009

Time of Flight MRA

- Spoiled gradient echo with high flip angle and short TR
- Static magnetization becomes highly saturated
-Relaxed inflowing blood has much higher signal

$M_{z}(t r)=M_{0}\left(1-\left(\left(1-M_{z}(t r-1) \cos (\alpha)\right) e^{-T R / T_{1}}\right)\right)$

Signal $($ tr $)=M_{z}($ tr $) \sin (\alpha)$

Contrast Enhanced MRA

- MRA acquired during the passage of a bolus of Gd based contrast agent
- T_{1} reduced as low as 50 ms
- T_{1} is so short, no need to rely on TOF effect for contrast
- Allows for very short TR and high flip angle
- Dramatically improves speed and/or SNR
- After first pass, Gd leaks into tissues

4s per frame

Contrast Enhanced MRA

GEMS web site

http://www.m.ehime-u.ac.jp/school/radiology/mra/3T-MRA.jpg

