Bioengineering 278
Magnetic Resonance Imaging

Winter 2011
Lecture 1

Topics:
- Nuclear magnetization
- Spin excitation
- The NMR signal

Spins

- Mass
- Spin
- Charge

Angular Momentum
Magnetic Moment

Hydrogen Nucleus = Proton

Boltzmann Distribution

down_spins
up_spins

\(E = \mu_z B_0 \)

\(\Delta E = \gamma h B_0 \)

\(E = -\mu_z B_0 \)

\(\frac{(down_spins)}{up_spins} = e^{-\Delta E/kT} \)

Ratio = 0.99998 at 3T!

Corresponds to an excess of about 20 up spins per million.
Equation of Motion for Magnetization Vector \mathbf{M}

Bloch Equation:

$$\frac{d\mathbf{M}}{dt} = \mathbf{M} \times \gamma \mathbf{B} - \frac{M_z \hat{i} + M_y \hat{j}}{T_2} - \frac{(M_z - M_0) \hat{k}}{T_1}$$

Solution:

$$M_z(t) = M_0 + (M_z(0) - M_0)e^{-t/T_1}$$
$$M_{xy}(t) = M(0)e^{-j\omega_0 t}e^{-t/T_2}$$

$$\omega_0 = \gamma B$$

Relaxation: Z-component

$$M_z(t) = M_0 + (M_z(0) - M_0)e^{-t/T_1}$$

Relaxation: Transverse Component

$$M = M_x + jM_y$$

$$\frac{dM}{dt} = \frac{d}{dt}(M_x + jM_y)$$

$$= -\left(j\omega_0 + 1/T_2\right)M$$

$$M(t) = M(0)e^{-j\omega_0 t}e^{-t/T_2}$$

$$\omega_0 = \gamma B$$
RF Excitation

Bloch equation says that magnetization will precess around the applied field.

B_1 radiofrequency field tuned to Larmor frequency and applied in transverse (xy) plane induces nutation (at Larmor frequency) of magnetization vector as it tips away from the z-axis.

- lab frame of reference

http://www-mrsrl.stanford.edu/~wro/defense/animations/

An NMR Experiment