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Modeling the hemodynamic response to brain activation
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Neural activity in the brain is accompanied by changes in cerebral blood

flow (CBF) and blood oxygenation that are detectable with functional

magnetic resonance imaging (fMRI) techniques. In this paper, recent

mathematical models of this hemodynamic response are reviewed and

integrated. Models are described for: (1) the blood oxygenation level

dependent (BOLD) signal as a function of changes in cerebral oxygen

extraction fraction (E) and cerebral blood volume (CBV); (2) the balloon

model, proposed to describe the transient dynamics of CBV and deoxy-

hemoglobin (Hb) and how they affect the BOLD signal; (3) neuro-

vascular coupling, relating the responses in CBF and cerebral metabolic

rate of oxygen (CMRO2) to the neural activity response; and (4) a simple

model for the temporal nonlinearity of the neural response itself. These

models are integrated into a mathematical framework describing the

steps linking a stimulus to the measured BOLD and CBF responses.

Experimental results examining transient features of the BOLD

response (post-stimulus undershoot and initial dip), nonlinearities of

the hemodynamic response, and the role of the physiologic baseline state

in altering the BOLD signal are discussed in the context of the proposed

models. Quantitative modeling of the hemodynamic response, when

combined with experimental data measuring both the BOLD and CBF

responses, makes possible a more specific and quantitative assessment of

brain physiology than is possible with standard BOLD imaging alone.

This approach has the potential to enhance numerous studies of brain

function in development, health, and disease.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

One of the remarkable developments in recent work on

magnetic resonance (MR) imaging is the recognition that changes

in the metabolic state of the brain affect the local MR signal and

provide an intrinsic mechanism for detecting brain activation

(Kwong et al., 1992; Ogawa et al., 1990). The origin of this effect
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is that hemoglobin (Hb) is diamagnetic when oxygenated and

paramagnetic when deoxygenated. The presence of deoxyhemo-

globin alters the local magnetic susceptibility, creating magnetic

field distortions within and around the blood vessels, and this

microscopically inhomogeneous field produces a slight alteration

in the local MR signal. If the local oxygen extraction fraction (E)

always remained constant, the deoxyhemoglobin concentration in

blood would not change, and this biophysical effect would be only

an interesting curiosity. However, when combined with an

unexpected physiological phenomenon, this effect becomes a

powerful tool for mapping brain activation. Following increased

neural activity in the brain, the local cerebral blood flow (CBF)

increases much more than the cerebral metabolic rate of oxygen

(CMRO2), and as a result E decreases with activation (Fox and

Raichle, 1986). Because the local blood is more oxygenated, there

is less deoxyhemoglobin present, the magnetic field distortions are

reduced, and the local MR signal increases slightly. This small

blood oxygenation level dependent (BOLD) signal change is the

mapping signal used in most functional magnetic resonance

imaging (fMRI) applications.

Empirically, the BOLD effect has proven to be a sensitive tool

for mapping brain activation. In a typical fMRI experiment at 1.5

T, images are collected rapidly with a single-shot echo planar

imaging (EPI) or spiral gradient echo acquisition with an echo time

(TE) of about 40 ms. The repetition time (TR) between subsequent

images of a particular slice is about 2 s, and dynamic images are

acquired over several minutes as stimuli are presented to the

subject. Then the time course of each image voxel is analyzed to

detect BOLD signal time courses that show a significant

correlation with the stimulus.

In such fMRI experiments, the goal is tomap patterns of neuronal

activation in the subject’s brain while they perform specific tasks.

However, the BOLD signal does not directly measure the neuronal

activity itself. Instead, the BOLD effect is sensitive to the changes in

CBF, CMRO2, and cerebral blood volume (CBV), the set of

physiological responses that are referred to collectively as the

hemodynamic response to activation. A critical goal for interpreting

fMRI data is to understand the underlying link between neuronal

activity and the hemodynamic response.

In this paper, we review and integrate several recent models that

have been proposed for describing different aspects of the
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hemodynamic response. Our goal is to develop a mathematical

description of the translation from an applied stimulus pattern to

the measured BOLD signal. Such a model necessarily includes

speculative elements and should be regarded as a working model in

need of experimental testing. A quantitative working model such as

this can guide experimental design and inform the interpretation of

experimental results. In particular, a modeling approach can help to

identify possible sources of variability of the BOLD response

across the brain and across subject populations, and provide

mechanisms for how such variability can arise despite similar

underlying neural responses.

The fact that the BOLD signal depends on a combination of

changes in CBF, CBV, and CMRO2, and also on the baseline

physiological state, makes it difficult to interpret the magnitude of

the BOLD signal change unambiguously without further exper-

imental information. For this reason, the BOLD effect has been

used primarily as a mapping tool, based on detecting signal

changes, rather than as a probe of the underlying physiology based

on a detailed analysis of the BOLD response. However, when the

BOLD signal change is combined with other MRI methods for

measuring CBF directly, it becomes possible to untangle some of

the factors that influence the BOLD effect, enabling a much more

detailed modeling of the physiological processes.

Arterial spin labeling (ASL) techniques provide a means of

measuring both the BOLD signal and CBF simultaneously (Buxton

et al., 1998c; Wong et al., 1997). With ASL, the magnetization of

arterial blood is inverted and, after a suitable delay to allow the

tagged blood to enter the desired image plane, an image is

acquired. The experiment is then repeated without tagging the

arterial blood and another image is acquired as a control. The

image difference, control minus tag, is then a direct reflection of

how much arterial blood was delivered to each voxel and so

provides a map of CBF. There are several variants of ASL

techniques and several technical issues that must be addressed in

order for the results to be interpreted in a quantitative fashion (see

Buxton, 2002b for a review).

When these factors are taken into account, ASL offers a

powerful probe of brain physiology. With a dual echo acquisition,

with subsequent acquisitions alternating between tag and control,

the data can be processed to yield essentially independent

measurements of the local CBF and BOLD time series. Although

such techniques are not yet widely available, they offer the best

prospects for providing the data that will allow a quantitative

interpretation of the BOLD effect. In addition, newer MRI

techniques promise to provide measurements of CBV over time

as well (Lu et al., 2003). In the following discussion of models of

the hemodynamic response, we will assume that the measurable

quantities are time series of CBF and BOLD, and that under some

circumstances CBV can be measured as well.

Four models are considered, which when combined provide a

model of the full path from a temporal stimulus pattern to a

measured CBF response and a BOLD response. The models treat

(1) the BOLD signal as a function of changes in E and CBV; (2)

the balloon model, proposed to describe the transient dynamics of

CBV and deoxyhemoglobin and how they affect the BOLD signal;

(3) neurovascular coupling, relating the responses in CBF and

CMRO2 to the neural activity response; and (4) a simple model for

the temporal nonlinearity of the neural response itself. Recent

experimental findings on the linearity of the BOLD response and

the effect of the baseline physiological state on the BOLD response

are considered in light of these models.
Experimental characterization of the hemodynamic response

Based on numerous experimental studies of the BOLD and

CBF responses to brain activation, the following are the key

findings that motivate the modeling:

1. CBF increases much more than CMRO2 with brain activation,

producing a reduction of E and the total deoxyhemoglobin

present in an image voxel (Fox and Raichle, 1986; Hoge et al.,

1999). This phenomenon is the primary cause of the BOLD

signal change.

2. The CBF and BOLD responses to even a very brief stimulus are

delayed by 1–2 s and have a temporal width on the order of 4–6 s

(Bandettini et al., 1992). For a sustained stimulus of 20 s or

longer, the response typically reaches a plateau value, although

there can be substantial variation (e.g., an initial overshoot, a

slow ramp, or an overshot at the end of the stimulus).

3. A post-stimulus undershoot of the BOLD signal is common

and may last for 30 s or more (Frahm et al., 1996; Kruger et

al., 1996), with longer duration stimuli tending to have longer

post-undershoots. The CBF response typically shows only a

shorter and weaker post-stimulus undershoot, or none at all

(Buxton et al., 1998c; Obata et al., 2004).

4. Some investigators have reported an initial dip of the BOLD

signal lasting 1–2 s before the standard BOLD signal increase

(Ernst and Hennig, 1994; Hu et al., 1997; Menon et al., 1995;

Yacoub and Hu, 2001), and a corresponding transient increase

of deoxyhemoglobin has been reported in optical imaging

studies (Malonek and Grinvald, 1996). The effect is small and

not always present (Buxton, 2001; Jones et al., 2001; Lindauer

et al., 2001), but it has stirred interest because it may reflect a

rapid increase of CMRO2 before the CBF increase, and this

phenomenon may be better localized to the area of increased

metabolism (i.e., the CBF increase may cover a wider area)

(Malonek and Grinvald, 1996).

5. The BOLD response typically exhibits a temporal nonlinearity

such that an appropriately shifted and added response to a brief

stimulus over-predicts the true response to an extended

stimulus (Birn et al., 2001; Boynton et al., 1996; Friston et

al., 1998; Glover, 1999; Miller et al., 2001; Robson et al.,

1998; Vasquez and Noll, 1998). This temporal nonlinearity is

most pronounced when the brief stimulus is less than about 4 s

and the extended stimulus is longer than 6 s. Comparing short

and long duration stimuli that are both longer than about 4 s,

the temporal nonlinearity is reduced.

6. Nonlinearity has also been reported as a brefractory periodQ,
such that two identical stimuli presented close together in time

produce a net response with less than twice the integrated

response of a single stimulus alone (Boynton et al., 1996;

Buckner, 1998; Huettel and McCarthy, 2001).

7. There is a growing body of evidence suggesting that the

baseline CBF can have a strong effect on the magnitude of the

BOLD response to the same stimulus (Corfield et al., 2001;

Davis et al., 1998; Hoge et al., 1999; Kastrup et al., 1999,

2002; Kim et al., 1999; Li et al., 1999). For example, if

baseline CBF is increased by breathing CO2, the BOLD

response to the same task is reduced substantially. Interest-

ingly, however, the CBF change (DCBF) appears to remain the

same despite the baseline change (Ances et al., 2001; Kastrup

et al., 2002; Li et al., 1999, 2000). Similar results have been

found with injection of acetazolamide, a carbonic anhydrase



Table 1

Model variables, parameters, and typical values

Definitions

Dynamic variables

f(t) CBF normalized to baseline

m(t) CMRO2 normalized to baseline

v(t) CBV normalized to baseline

q(t) DeoxyHb content normalized

to baseline
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inhibitor (Brown et al., 2003). Carbonic anhydrase catalyzes

the conversion of CO2 to bicarbonate ions, which increases the

carrying capacity of the blood for removing CO2. Inhibiting

this enzyme may lead to increased CO2 concentration in the

brain, so the mechanism of action for increasing CBF may be

the same as for CO2 itself.

With these examples as experimental background, we now

consider quantitative models for the hemodynamic response.

b(t) BOLD signal change (%)

E(t) O2 extraction fraction

N(t) Neural activity

s(t) Stimulus pattern

Physiological parameters

F0 (0.01 s�1) Baseline CBF (0.01 s�1 =

60 ml min�1 ml�1 tissue)

DF Absolute CBF change with

activation

E0 (0.4) Baseline O2 extraction fraction

V0 (0.03) Baseline blood volume

a (0.4) Steady state flow–volume

relation: v = f a

n (2–3) Steady-state flow–metabolism

relation: n = ( f � 1)/(m � 1)

BOLD signal parameters

a1 (3.4) Weight for deoxyHb change

a2 (1.0) Weight for blood volume

change (estimated for 1.5 T)

Balloon model parameters

fout(v,t) Outflow from the balloon

(transiently different from f)

sMTT Transit time through the

balloon (V0/F0)

s+ (0–30 s) Viscoelastic time constant

(inflation)

s� (0–30 s) Viscoelastic time constant

(deflation)
Definition of dynamic variables

For the remainder of the paper we will use the more compact

notation defined in Table 1 for the dynamic variables and

parameters. The assumed causal connections between the variables

are diagrammed in Fig. 1: (1) the stimulus pattern s(t) drives the

neural response N(t); (2) N(t) drives the CBF response f(t) and the

CMRO2 response m(t); (3) f (t) and m(t) drive the balloon model

to produce the CBV response v(t) and the total deoxyhemoglobin

response q(t); and (4) q(t) and v(t) combine to produce the BOLD

signal. In most cases we use the convention that upper case

variables refer to absolute quantities, while lower case variables are

the same quantity normalized to its baseline value. Then, for

example, at baseline f = m = q = v = 1 and E = E0.

For the calculations shown here, we are particularly

interested in transient features and nonlinearities of the BOLD

response. To emphasize these effects, we assume simple forms

for scaling the stimulus and the neural response. The stimulus is

considered to be a brief event (e.g., one reversal of a visually

presented checkerboard), and these events can be presented in

any pattern, including direct concatenation to produce a

sustained stimulus (e.g., a flickering checkerboard). The stimulus

pattern s(t) is then a time series of ones and zeroes defining

when events occurred. The neural response is defined such that

N(t) = 1 on the plateau of a sustained stimulus when no

adaptation effects are operating.
Neural response parameters

jn (0.0–2.0) Inhibitory gain factor

s i (1–3 s) Inhibitory time constant

Neurovascular coupling (assumed linear)

sf (4 s) Width of CBF impulse

response

sm (4 s) Width of CMRO2 impulse

response

yt (0–2 s) Delay of CBF relative to

CMRO2 responses

f1 (1.0–2.0) Normalized CBF response to

sustained neural activation
Physiological relationships

The CBF increase associated with neural activity is triggered by a

relaxation of the smooth muscle in the wall of the arterioles. The

arterioles provide most of the resistance in the vascular tree and

provide a way to quickly decrease vascular resistance by relaxing.

As the resistance of the arterioles decreases, the pressure drop across

these vessels also decreases, raising the pressure in the capillaries

and veins. These vessels may also expand due to the increased

pressure, further increasing the CBV. Experimental studies (Grubb

et al., 1974) have indicated that the steady-state relationship between

CBF and CBV can be described with a power law:

v ¼ f a ð1Þ

where the exponent is approximately a = 0.4. This empirical

relationship applies to the entire blood volume. For our purposes we

are really interested in the venous volume, and to a lesser extent the

capillary volume, because this is where the deoxyhemoglobin lies.

Nevertheless, a value of a = 0.4 is often used in modeling the BOLD

effect.
At steady-state, CBF and CMRO2 are related to each other by the

arterial oxygen concentration Ca and the net oxygen extraction

fraction E:

CMRO2 ¼ Ed Cad CBF

m ¼ E

E0

f

ð2Þ

The local oxygenation of the venous blood depends directly on E.



Fig. 1. Diagram of the proposed model linking the applied stimulus to the

resulting physiological responses and the measured BOLD response.
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For modest changes around an awake baseline state, experiments

suggest that the relationship between the CBF and CMRO2 changes

can be characterized as linear with a slope n defined as the fractional

change in CBF divided by the fractional change in CMRO2:

n ¼ DCBF=CBF0
DCMRO2=CMRO20

ð3Þ

n ¼ f � 1

m� 1

where the subscript b0Q denotes baseline values. Most recent

experimental measurements find n = 2–3 (Davis et al., 1998; Hoge

et al., 1999; Kastrup et al., 2002; Marrett and Gjedde, 1997; Seitz

and Roland, 1992), although larger values have also been reported

(Fox and Raichle, 1986; Kuwabara et al., 1992).

The fact that n N 1, so that E decreases with activation, is the

physiological source of the BOLD effect, and this was originally

described as an uncoupling of CBF and CMRO2 in the seminal
work of Fox and Raichle (1986). However, a promising alternative

explanation developed over the last few years is the oxygen

limitation model (Buxton, 2002a; Buxton and Frank, 1997; Gjedde

et al., 1991, 1999; Hyder et al., 1998). By this model, the drop in E

with activation plays a functional role, rather than serving as a

marker of an uncoupling. The key idea of this model is to think of

the O2 flux down a diffusion gradient from the mean capillary

value to the mean value in mitochondria. To increase the net flux

(i.e., increase CMRO2), the gradient must be increased. If there is

no capillary recruitment, so the O2 source cannot be brought closer

to the mitochondria, and the mean mitochondrial pO2 is very low,

then the only way to increase the O2 flux is to raise the average

capillary pO2. The average capillary pO2 lies somewhere between

the arterial and venous pO2 values, and because the arterial pO2 is

fixed, the only local control available is to raise the venous pO2.

And raising venous pO2 requires a reduction of the oxygen

extraction fraction E. In this way, the decrease in E is necessary to

increase the O2 diffusion gradient from capillaries to mitochondria.

For the calculations in this paper, we will simply use the empirical

relationship in Eq. (3).

Eqs. ((1)–(3)) are useful for relating the key physiological

quantities involved in the BOLD effect, but it is important to

remember that while Eq. (2) is necessarily true from the definition

of the terms involved, Eqs. (1) and (3) are empirical relationships,

and the uniformity of these relationships across brain regions,

subject populations, species, and different physiological states is

still open to question and in need of experimental evaluation.
Modeling the BOLD effect

The BOLD effect is primarily due to changes in local

deoxyhemoglobin content, but quantitative modeling of this effect

requires some subtlety. In fact, there are two sources of signal change

that must be modeled: the intravascular and the extravascular signals

(Boxerman et al., 1995a; Ogawa et al., 1993). Both regimes are

affected by the magnetic field gradients created by the presence of

deoxyhemoglobin, which cause the MR signal to decay faster when

deoxyhemoglobin increases. Although the intrinsic intravascular

signal is much less than the extravascular signal, the sensitivity of

the intravascular signal to the oxygenation of blood is much greater.

The result is that the intravascular contribution likely accounts for

half or more of the signal change observed at 1.5 T. The total

deoxyhemoglobin content could change either by changing the

oxygen extraction fraction or by changing the volume of the venous

blood, so the role of volume changes must be included (Boxerman et

al., 1995b; Ogawa et al., 1993; Yablonsky and Haacke, 1994). And

finally, for the smallest vessels, diffusion effects can be important.

Thusmodeling the BOLD effect depends not only on the biophysical

models for how intravascular susceptibility differences alter the

signal, but also physiological models for how CBF, CBV, and

CMRO2 change with activation. The relative changes in CBF and

CMRO2 determine the level of oxygenation of the blood, and the

CBV determines the total amount of blood (and thus the total

deoxyhemoglobin present in the voxel).
Magnetic susceptibility effects and the MR signal

Ogawa et al. (1993) introduced a biophysical model for the

BOLD effect and Davis et al. (1998) extended this model based on



R.B. Buxton et al. / NeuroImage 23 (2004) S220–S233S224
reasonable approximations and the results of numerical simulations.

Because of its simplicity, the model has proven to be a useful tool for

understanding the BOLD effect in a quantitative way and has

provided a method for calibrating the BOLD signal and measuring

CMRO2 changes. The model starts from the simple picture of how

the BOLD effect arises, and relates the signal change to the

underlying physiological variables and a few parameters that

describe the local tissue.

The MR signal for a typical gradient echo acquisition is modeled

as a simple exponential dependence on the echo time TE and can be

written as:

S ¼ Smaxd e
�TEd R2

4

R24 ¼ R24 0ð Þ þ R

ð4Þ

where Smax is the effective spin density (the signal that would be

measured if TE could be reduced to zero). The transverse relaxation

rate constant R2* is written as a sum of two terms: R2*(0) is the value

of R2* if no deoxyhemoglobin is present, and R describes the

additional relaxation produced by deoxyhemoglobin. Note that

typically R2*(0) is much larger than R, that is, the local T2* that

describes the decay of the signal is largely determined by the

intrinsic T2 and large-scale field gradients through the voxel, and the

additional effect of deoxyhemoglobin is minor. For this reason, the

signal changes due to the BOLD effect are small, but measurable.

We now assume that with activation R is the only parameter

that changes. Using the subscript b0Q to denote the resting value

and bactQ to denote the activated value, the BOLD signal change

with activation DS = Sact � S0 is:

DS

S0
¼ e�DR2

4d TE � 1 �� DR24d TE

DR24 ¼ Ract � R0

ð5Þ

The key question is: how does DR2* depend on blood

oxygenation and volume? The magnitude of the magnetic field

distortions near a magnetized vessel is proportional to the magnetic

susceptibility difference between the blood and the surrounding

extravascular space. Experiments indicate that the magnetic

susceptibility difference can be accurately modeled as having a

linear dependence on the local deoxyhemoglobin concentration in

blood, and this quantity in turn can be expressed in terms of the

change in the oxygen extraction fraction E.

However, the scaling of the field offsets does not necessarily

define the scaling of the signal attenuation. As spins evolve in an

inhomogeneous field, a distribution of phase angles develops, and

it is this phase dispersion at the time of data collection that

determines R. In particular, diffusion of water molecules effec-

tively smooths the field distribution to create a narrower spread of

phases. To model this in an approximate way, Davis et al. assumed

a power law relationship between R and DB, the magnitude of the

field distortions: R~DBb. Numerical simulations (Boxerman et

al., 1995a,b; Ogawa et al., 1993) and theoretical analyses

(Yablonsky and Haacke, 1994) suggest that when diffusion is not

important b c 1, but that b c 2 gives a better description around

the smallest vessels where diffusion effects are important.

Numerical simulations for a mixture of vessel sizes suggest that

b = 1.5 is a good approximation for 1.5–3 T, but that at higher

fields b should approach 1.

In addition to the change in E with activation, a change in blood

volume also affects R. For example, even if the oxygenation of the

blood did not change but the venous blood volume increased, the
total deoxyhemoglobin would be increased, and we would expect

this to increase R and decrease the net MR signal. Numerical

simulations suggest that a reasonable approximation is to assume

that R is proportional to V, the venous blood volume. Combining

these dependences, the contribution of deoxyhemoglobin to the

relaxation rate is modeled as:

R~VEb ð6Þ

The BOLD signal change

Following Davis et al. (1998), these ideas can be combined to

model the MR signal in terms of the blood volume (V) and the

oxygen extraction fraction (E):

DS

S0
�Ad 1� Vact

V0

Eact

E0

� �b
" #

ð7Þ

The parameter A lumps together TE and the unknown proportion-

ality constant in Eq. (6), and is also proportional to the local resting

blood volume V0 and the resting oxygen extraction fraction E0
b. A

decrease of either of the physiological quantities (V or E) will

decrease the local deoxyhemoglobin concentration and so increase

the MR signal.

Eq. (7) for the BOLD signal change is quite simple, depending

on two physiological changes (the change in blood volume V and

oxygen extraction fraction E) and two additional parameters b
and A. The form of the signal equation directly describes the

ceiling effect on the BOLD signal. In simple terms, A is the

maximum BOLD signal change that could occur, corresponding

to complete removal of deoxyhemoglobin from the voxel. The

parameter b should be primarily field dependent, and we can

assume that it is not a function of brain region. The parameter A,

however, is a local parameter and so may vary across different

voxels in the brain. Note that this parameter is proportional to the

value of R at rest, the relaxation rate produced by deoxyhemo-

globin in the baseline state. This means that the more

deoxyhemoglobin is present at rest, the larger the BOLD signal

change will be for the same fractional change in V and E with

activation. We will come back to this later when we consider the

effect of the baseline condition on the magnitude of the BOLD

effect.

In our notation with dynamic variables normalized to their

baseline values, and assuming Eq. (1) is accurate, the basic BOLD

signal equation is:

DS

S0
¼ Ad 1� f a�bmb

� �
ð8Þ

Although Eq. (8) is a very useful model, the reader should bear in

mind that it does not necessarily describe all of the effects that

may contribute to the measured signal change in an activation

experiment. Specifically, small direct effects of CBF and CBV

changes on the MR signal that are independent of the BOLD

effect are likely present in real data. For example, if the repetition

time TR is shorter than the T1 of blood and the flip angle is large

(e.g., 908), the increased delivery of fresh unsaturated blood due to

increased CBF could increase the net signal slightly. In addition,

the intrinsic signal from arterial blood typically is larger than the

intrinsic signal of the extravascular space at 1.5 T, so increasing

the arterial blood volume fraction of the voxel could also produce
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a slight signal increase. Note that both of these effects are due to

arterial blood changes, where deoxyhemoglobin is negligible, so

these are effects in addition to the BOLD effect. In most

applications, these effects are thought to be small compared to

the BOLD effect, especially at higher magnetic fields, but they

may not be negligible.
Fig. 2. (A) The modeled BOLD signal as a function of the CBF change with

activation illustrating the approximate equivalence of the model in Eq. (8)

(with A = 0.075 and b = 1.5, solid lines) and Eq. (9) (with V = 0.03,
Calibrated BOLD approach for measuring CMRO2 changes

Davis et al. (1998) showed that by measuring both the BOLD

signal change and the CBF change with activation, and analyzing

these data in terms of the BOLD signal model, it is possible to

estimate the change in CMRO2. This technique was used

effectively by Hoge et al. (1999) to explore the coupling of CBF

and CMRO2 during brain activation. The essential problem in

applying Eq. (8) to measured data is the uncertainty about the local

value of A. If A is known, then m can be determined from Eq. (8)

when f and DS are measured with an ASL experiment. To measure

A, Davis et al. and others have exploited a well-established—but

poorly understood—physiological phenomenon: breathing CO2

significantly raises CBF but has little or no effect on CMRO2. This

provides a way to calibrate the BOLD signal with a hypercapnia

experiment. By measuring f and DS in response to breathing CO2,

combined with the assumption that CMRO2 remains constant (m =

1), the value of A is calculated from Eq. (8). The same equation is

applied again to the measured activation signals in that region, and

with a known value of A, the value of m with activation can be

calculated. Because of the assumptions involved (Eq. (1)), this is

essentially a steady-state measurement of CMRO2 change from

baseline. However, if both CBF and CBV time courses are

measured independently, a dynamic curve for CMRO2 can be

calculated (Mandeville et al., 1999a).

0

dashed lines). Curves are shown for several values of the CBF/CMRO2

coupling parameter n. The curvature of these lines is due to the BOLD

ceiling effect, and this is an important source of nonlinearity in the BOLD

response. (B) Steady-state trajectory for a CBF increase up to 50% with n =

3 plotted in the q/v plane, where q is normalized total deoxyhemoglobin

and v is normalized venous blood volume. Contours are the BOLD signal in

steps of 0.5%, calculated from Eq. (9). The initial baseline value ( q = v = 1)

is shown as a red dot, and a line of constant oxy-Hb is shown in green.
Alternative forms for the BOLD signal model

An alternate form of the BOLD signal equation was proposed to

model the dynamics of the BOLD effect in the context of the

balloon model (Buxton et al., 1998c) (described in the next

section). The derivation of this model is based on separate

estimates of the intravascular and extravascular signal changes.

In this way, the model can be used to analyze experiments in which

flow-nulling bipolar gradient pulses are applied to destroy the

signal of moving blood, and thus eliminate the intravascular signal

changes from the BOLD effect (Buxton et al., 1998a). The key

physiological variables are the total deoxyhemoglobin ( q) and the

blood volume (v), both normalized to their values at rest. In this

model, the BOLD signal change is written as:

DS

S
� V0 a1 1� qð Þ � a2 1� vð Þ�½ ð9Þ

where V0 is the resting venous blood volume fraction (e.g., 0.03)

and the dimensionless parameters a1 and a2 depend on several

experimental and physiological parameters. The values estimated

by Obata et al. (2004) for a magnetic field of 1.5 T with TE = 40

ms and E0 = 0.4 are a1 = 3.4 and a2 = 1.0.

Eqs. (8) and (9) are framed in terms of different variables, but

they are approximately equivalent expressions for the BOLD signal

change. Fig. 2 shows curves of the BOLD response as a function of
the CBF change calculated with the two models with A = 0.075 in

Eq. (8) and V0 = 0.03 in Eq. (9) (other parameters were the

standard values listed in Table 1). These curves were calculated for

steady-state changes using the relation q/v = E/E0 to relate the

variables of the two equations. In their calibrated BOLD experi-

ments in human visual cortex, Davis et al. found an average value

of A = 0.079, and 3% is a reasonable estimate of the venous blood

volume fraction. This suggests that the theoretical assumptions that

led to the estimates of a1 and a2 in Eq. (9) are in reasonable

agreement with experimental data, and the similarity of the curves

illustrates the consistency of the two models.

Eq. (8) is useful for calibrated BOLD studies, because it

explicitly includes CBF, a measurable quantity. On the other hand,

Eq. (9) deals explicitly with the variables of the balloon model, and

so is more convenient for most of the modeling calculations

described in this paper.

Based on Eq. (9), we can look at the BOLD signal as a

contour plot in the q/v plane, because the dynamic variables q
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and v determine the signal. Fig. 2B shows such a plot, along with

a curve of constant oxyhemoglobin (a line of constant deoxy-

hemoglobin is vertical). Note that the BOLD signal does not

purely follow total deoxyhemoglobin or oxyhemoglobin (i.e., the

contours of constant BOLD signal are neither horizontal nor

parallel to the constant oxyhemoglobin curve). Because of this, it

is possible for the BOLD signal to increase despite an increase of

deoxyhemoglobin. As an example, consider a scenario in which

the increase in CBV and the decrease in E happen to combine to

produce no change in total deoxyhemoglobin, so that q = 1 but

v N 1. In this case, the field distortions outside the vessels will be

similar, but the concentration of deoxyhemoglobin in the blood

must have decreased. The intravascular signal depends strongly

on the deoxyhemoglobin concentration, and so this component of

the signal will increase. The result is a BOLD signal increase

with no change in deoxyhemoglobin. This subtlety of the BOLD

signal may become important in comparing fMRI data with

optical or near-infrared results that are sensitive to deoxyhemo-

globin and oxyhemoglobin: there is no one-to-one correspond-

ence between the BOLD signal and the total deoxyhemoglobin

(Hess et al., 2000).

Analyzing the BOLD signal in the q/v plane is also useful for

visualizing the physiological dynamics accompanying brain

activation. Fig. 2B shows a simple trajectory that would result

for a gradual CBF increase of 50% with n = 3, if the physiological

quantities all followed their steady-state relationships (Eqs. ((1)–

(3))) at all times. The interesting dynamics develops when the

physiological variables transiently depart from these relationships

in the transition to a new steady-state, and then the trajectories

become rather more complicated. The following models attempt to

describe these dynamics.
The balloon model

The balloon model (Buxton et al., 1998c) was motivated by the

observation in an animal study (Mandeville et al., 1998) that CBV

returned to baseline more slowly than CBF after the end of the

stimulus, and the idea that this effect might explain the post-

stimulus undershoot of the BOLD signal that is often observed. A

similar windkessel model was proposed by Mandeville et al.

(1999b) to embody the same concept and provide a biomechanical

mechanism for a delayed CBV return to baseline. The balloon

model has been refined and compared with experimental data

(Feng et al., 2001; Friston, 2002; Friston et al., 2000; Mildner et

al., 2001; Obata et al., 2004; Toronov et al., 2003), and some errors

in the original parameter estimates were recently corrected (Obata

et al., 2004). The model is capable of producing BOLD post-

stimulus undershoots that match well with experimental data.

However, the central premise of the model, that the undershoot

occurs when CBV returns slowly to baseline, has not been

definitively established and focused experimental tests of this

question are needed (e.g., Mandeville et al., 1999a; Toronov et al.,

2003).

The central idea of the model is that the venous compartment

is treated as a distensible balloon. The inflow to the balloon fin is

the cerebral blood flow ( f in our current notation), while the

outflow from the balloon fout is an increasing function of the

balloon volume. The two dynamical variables are the total

deoxyhemoglobin q(t) and the volume of the balloon v(t). The

equations of the balloon model represent mass conservation for
blood and deoxyhemoglobin as they pass through the venous

balloon:

dq

dt
¼ 1

sMTT

f tð Þ E tð Þ
E0

� q tð Þ
v tð Þ fout v; tð Þ

��
(10)

dv

dt
¼ 1

sMTT

f tð Þ � fout v; tð Þ�½

The net extraction fraction of oxygen isE(t), and the resting value

is typically E0 = 0.4. The time dimension of the equations is scaled

by the time constant sMTT, the mean transit time through the balloon

at rest. For a cerebral blood flow of 60 ml min�1 100 ml�1 of tissue

(equivalent to a rate constant of 0.01 s�1) and a resting venous blood

volume fraction of V0 = 0.03, the mean transit time is sMTT = 3 s.

The driving function of the system is the quantity f(t)E(t). In

the original formulation of the balloon model, the extraction

fraction was modeled as a fixed function of the inflow f, a tight

coupling of flow and oxygen metabolism. The equations were

generalized by Obata et al. (2004), treating E(t) as an independent

quantity to be able to explore the dynamics that result from

uncoupling of blood flow and oxygen metabolism. Note that the

quantity fE/E0 is simply the cerebral metabolic rate of oxygen

(CMRO2) normalized to its value at rest (m).

In the original formulation of the balloon model (Buxton et al.,

1998c), the outflowwas modeled as a pure function of blood volume

v. Steady-state experiments (Grubb et al., 1974), altering CBF with

inhaled CO2, found that the steady-state relationship between CBF

and total blood volume was well described by an empirical power

law (Eq. (1)). However, interesting dynamics occur when the blood

volume transiently lags behind this steady-state relationship, for

example, due to viscoelastic effects. In the original discussion of

the balloon model, the description of these transients was an

arbitrary mathematical form, chosen just to illustrate the type of

effects that could occur. However, that approach is not well suited

to data modeling. In particular, it would be useful to have a simple

model that could be tested against multiple data sets, such as

experiments varying the duration of the stimulus.

To that end, we proposed a simple model for these viscoelastic

effects in which fout is treated as a function of the balloon volume

and the rate of change of that volume (Buxton et al., 1998b):

fout vð Þ ¼ v
1
a þ s

dv

dt
ð11Þ

With this form, the balloon initially resists a change in volume, but

eventually settles into a new steady-state that conforms with the

power law model in Eq. (1). The time constant s controls how long

this transient adjustment requires. A nonzero value for s produces

hysteresis in the curve fout(v), so that the system follows a different

curve on inflation and deflation. To generalize this form and enable

more fine tuning to data, we allow s to take on different values

during inflation (s+) and deflation (s�).
For a specified driving function f(t)E(t), and values for the

parameters sMTT, E0, a, s+, and s�, Eqs. (10) and (11) can be

integrated numerically to yield dynamic time courses for q(t) and

v(t). These dynamic physiological quantities can then be combined

with the BOLD signal model (Eq. (9))) to generate MR signal

curves. Fig. 3 shows balloon model curves for a simple smooth

trapezoidal form for f(t) and a fixed CBF/CMRO2 coupling

parameter n = 3. A nonzero value for s+ creates an initial

overshoot of the BOLD signal, and a nonzero value for s� creates



Fig. 3. Dynamic curves calculated with the balloon model for two sets of

model parameters: s+ = s� = 0 (blue solid curve) and s+ = s� = 20 (red dashed

curve). The input curves for inflow f(t) (bFlowQ) and oxygen extraction

fraction (bEQ) were identical for both calculations. Nonzero values for s+ or
s� create an initial overshoot or poststimulus undershoot of the BOLD signal,

respectively, by causing the CBV to change more slowly than CBF.
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a poststimulus undershoot. These curves show that quite different

BOLD responses can result from the same underlying CBF and

CMRO2 response.
Neurovascular coupling

We do not currently have a quantitative understanding of the

mechanisms that couple neural activity to CBF and CMRO2

changes. In fact, there is no consensus on exactly which aspect of

neural activity drives the hemodynamic response, and this is an

active area of research. Experimental studies comparing electro-

physiological measurements with BOLD and CBF changes have

found that the hemodynamic responses correlate better with local

mean field potential, rather then local spiking rates, suggesting that

the hemodynamic response is dominantly driven by input synaptic

activity rather than output spiking activity (Lauritzen, 2001;

Lauritzen and Gold, 2003; Logothetis, 2002; Logothetis et al.,

2001). Theoretical analyses of the energy budget for neuronal

signaling provide some support for this picture as well (Attwell and

Laughlin, 2001; Lennie, 2003). The primary expenditure of energy

is required to restore the ion gradients degraded during neural

activation. The intracellular–extracellular sodium gradient is far

from equilibrium, so pumping sodium against this gradient is a

strongly uphill reaction in a thermodynamic sense. For this reason,

the most costly aspect of neural activity is likely to be excitatory

synaptic activity in which glutamate opens sodium channels.
Indeed, the action of the sodium–potassium pump is thought to

consume a large fraction of the ATP energy budget in the brain

(Ames, 2000). In a recent animal experiment, blocking voltage-

dependent sodium channels substantially reduced the CBF

response (Kida et al., 2001), supporting the idea that the dominant

energy consuming process in the brain is recovery from excitatory

activity. Finally, there is some evidence that inhibitory activity does

not elicit a measurable BOLD response (Waldvogel et al., 2000).

Friston et al. (2000) introduced a simple neurovascular coupling

model in which the rate of change of CBF is proportional to the

concentration of a vasoactive agent released by neural activity. In

this model, the CBF response is a linear transformation of the

neural activity. Using this model, they showed that an observed set

of nonlinearities modeled with Volterra kernels could be well

described with this more physiological model. This model was also

used to explore the effects of nonlinearity in different experimental

designs (Mechelli et al., 2001).

One of the goals of modeling the hemodynamic response is to

understand the origins of the nonlinearities of the response, and for

that purpose, it is useful to have a model that includes a nonlinear

transformation from the stimulus pattern s(t) to the CBF response

f(t). Such a nonlinearity could arise in the step from s(t) to the neural

response N(t), as, for example, in adaptation. In addition, the step

from neural activity to CBF response could be nonlinear, for

example, through a ceiling effect on CBF change. Given our poor

understanding of the mechanisms of neurovascular coupling, we

take here a simple approach and assume that the nonlinear step is

entirely in the transformation from s(t) to N(t), and in the next

section we introduce a simple model for this process that includes

adaptation. We then assume that both CBF and CMRO2 are linear

convolutions of an impulse response function h(t) with the

appropriate measure of neural activity N(t).

A plausible shape for h(t) is a gamma-variate function with a

full width at half maximum (FWHM) of about 4 s. For the

calculations here we use the form:

h tð Þ ¼ 1

ksh k � 1ð Þ!
t

sh

� �k

e�t=sh ð12Þ

with k = 3. For the calculations in this paper we also add a delay of

this response (typically about 1 s) to model the observed lag of the

hemodynamic response.

The shape h(t) is then scaled to provide the desired amplitude

and duration of the impulse response. For this shape, and a desired

FWHM of sf, the time constant in Eq. (12) is given by the

empirical expression sh = 0.242 sf. The CBF and CMRO2

responses to activation are then:

f tð Þ ¼ 1þ f1 � 1ð Þh t � dtf
� �

*N tð Þ

m tð Þ ¼ 1þ m1 � 1ð Þg t � dtmð Þ*N tð Þ
ð13Þ

The symbol * denotes convolution. The parameter f1 scales the

response shape to the appropriate amplitude and represents the

normalized flow increase on the plateau of the CBF response to a

sustained neural activity with unit amplitude. For example, if N(t) is

a 30-s block with amplitude 1, and the model parameters are f1 = 1.5

and sf = 4 s, the CBF response is a smoothed version of the block due

to the 4-s-wide smoothing kernel, and on the plateau CBF is

increased by 50%. The parameter ytf is the delay after the start of the
stimulus before the CBF response begins.

We model the CMRO2 response in Eq. (13) as an independent

convolution with potentially independent amplitude, width, and
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delay defined by g(t). In the calculations here, we assume a

coupled response such that the amplitude of the CMRO2 impulse

response is given by (m1 � 1) = ( f1 � 1)/n, and the width is the

same. In this way the steady-state response is constrained to follow

the empirical physiological relationship in Eq. (3). However, by

introducing a delay yt = ytf � ytm of the CBF response relative to

the CMRO2 response, we can introduce interesting dynamics such

as an initial dip of the BOLD response. This approach is analogous

to the balloon model, where the model is constrained to follow the

physiological relationship in Eq. (1) at steady state, but allows

substantial range for transient responses.

Fig. 4 illustrates the type of transient features that can result

from combining the balloon model with the independent con-

volution model. The figure shows different dynamic responses of

CBF, CMRO2, and CBV to the same 20-s uniform block of neural

activity. In these calculations, the responses f(t) and m(t) calculated

from the independent convolutions were used as input to the

balloon model to calculate v(t) and q(t). The first panel shows the

response when the viscoelastic time constants of the balloon model

are zero, and there is no delay between f(t) and m(t). In the second

panel, s� was increased to 20 s, and in the third panel the impulse

response for CBF was delayed by yt = 1 s relative to the CMRO2

response. The BOLD response for the last combination shows both

an initial dip and a poststimulus undershoot. The physiological

dynamics is also shown as a trajectory in the q/v plane on the right

side of Fig. 4, and the BOLD signal is a one-dimensional

projection of this two dimensional trajectory.
Fig. 4. Transients of the BOLD response due to variations in the timing of

the responses of the physiological variables CBF, CBV, and CMRO2. These

variables and the resulting BOLD response are shown on the left. The

BOLD response is diagrammed on the right as a trajectory in the q/v plane,

where q is the total deoxyhemoglobin and v is the blood volume, both

normalized to their baseline values (indicated by a red dot). The BOLD

signal intensity is shown as a shaded contour plot in the q/v plane based on

Eq. (9). The three sets of figures illustrate: (A) a simple BOLD response in

which the physiological changes have similar time courses; (B) a BOLD

response with an initial overshoot and poststimulus undershoot due to a

slow CBV response (s+ = s�= 20 s); and (C) a BOLD response with an

initial dip as well, created by adding a 1-s delay of the CBF impulse

response relative to the CMRO2 impulse response.
Modeling the neural response

As discussed in the previous section, the approach we have

adopted is to model the CBF and CMRO2 responses as linear

convolutions with the neural activity N(t), and uses a model for the

step from the stimulus s(t) to N(t) that includes the possibility for

adaptation. We chose a simple inhibitory feedback system, in

which the neural response N(t) is treated as the difference between

an excitatory input s(t) and an inhibitory input I(t). The inhibitory

input I(t) is driven by the neural response N(t) with a gain factor j
and a time constant sI. The set of equations is then:

N tð Þ ¼ s tð Þ � I tð Þ
ð14Þ

dI

dt
¼ jN tð Þ � I tð Þ

s1

From these equations, the neural response to a sustained stimulus is

an initial peak followed by decay to a lower plateau level, with the

difference between the peak and plateau values determined by j. As
written, these equations are linear, and the initial peak of the

response would be balanced by a dip after the end of the stimulus,

and such a post-undershoot of the neural response has been observed

(Logothetis, 2003). We introduce a nonlinear component, as well as

the possibility of a post-stimulus neural undershoot, by introducing a

baseline neural activity N0 and the requirement that the neural

response is a positive quantity (i.e., if the calculated quantity N0 +

N(t) b 0, it is replaced by zero). Then if the resting stimulus level is

N0 = 0, there is no dip following the end of the stimulus. This is the

adaptation pattern originally proposed by Boynton et al. to describe

the observed nonlinearities of the BOLD response in the visual

cortex (Boynton et al., 1996). On the other hand, if N0 N 0, there will

be a post-stimulus undershoot of the neural response. In addition to
diminishing the response to a sustained stimulus, this model also

introduces a brefractoryQ effect. If two events are presented close

together (within sI of each other), then the net response to both events
will have less than twice the area of the response to a single event.

This model provides a simple form for introducing a nonlinearity

that can be applied to any stimulus pattern: the amplitude of this

nonlinear effect is governed by j and the duration of the brefractoryQ
period is determined by sI. Fig. 5 shows an example that includes

both a two-pulse inhibition experiment and a sustained stimulus.
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Discussion

Modeling the hemodynamic response

We have constructed a proposed mathematical framework to

link an applied stimulus pattern with the resulting BOLD response.

The stimulus pattern drives the neural response, which could

exhibit adaptation effects controlled by the parameters j and sI.
The neural response independently drives the CBF and CMRO2
Fig. 5. Nonlinearity of the BOLD response with respect to additivity of

overlapped responses. A single event with a 1-s duration (the first stimulus

shown) was used to predict the response to a second identical event

presented 20 s later, a pair of identical events separated by a 1-s

interstimulus interval, and a block of 20 identical events concatenated to

create a continuous stimulation. For the flow and BOLD responses, the

predicted curve is shown in blue and the actual calculated curve is shown in

red. The calculations show two sources of nonlinearity: (A) with a purely

linear neural (j = 0) and flow response, the BOLD response still shows a

pronounced nonlinearity in the prediction of a sustained response due to the

BOLD ceiling effect, with the area of the actual response 22% lower than

the linear prediction. In addition, the area under the response to two pulses

close together is slightly reduced by 4% from twice the area under the

response to a single pulse. (B) With a neural response nonlinearity as well

(j = 3 and sI = 3 s), both the flow and BOLD responses exhibit

overprediction of the response to a sustained stimulus and a more

pronounced brefractory periodQ in the two pulse experiment (area of the

response reduced by 17%).
responses, treated as simple linear convolutions. The amplitudes of

these two responses are defined in terms of a flow amplitude f1 and

a steady-state CBF/CMRO2 coupling parameter n. A slight delay

of the CBF response relative to the CMRO2 response creates an

initial dip in the BOLD response. The CBF and CMRO2 response

drives the balloon model, which determines the time course of

CBV and total deoxyhemoglobin. Key parameters for the balloon

model are the resting O2 extraction fraction E0 and two viscoelastic

time constants s+ and s�. When these time constants are nonzero,

the BOLD response exhibits an initial overshoot and a poststimulus

undershoot that are not present in the CBF response. Finally, the

deoxyhemoglobin and CBV responses determine the dynamic

BOLD response, with the amplitude scaled by the resting venous

blood volume fraction V0.

A critical feature for modeling the BOLD effect is the

relationship between CBF and CMRO2 changes during activation.

Here we have taken the empirical approach, motivated by the

experimental data, and modeled this in terms of a single parameter

n, the ratio of the fractional change in CBF to the fractional change

in CMRO2. A deeper question is to ask why n is not equal to 1,

because this is the central phenomenon underlying the BOLD

effect. This is an area of active research (Aubert and Costalat,

2002; Buxton, 2004; Buxton and Frank, 1997; Gjedde et al., 1991,

2002; Hayashi et al., 2003; Hyder et al., 1998; Woo and Hathout,

2001; Zheng et al., 2002), and as this work is refined it can be

included as a central step in modeling the path from stimulus to

BOLD response.

Transients of the BOLD response

Notable features of experimental measurements of the BOLD

response are the transients, an occasional brief initial dip at the

beginning, or the more common prolonged poststimulus under-

shoot. The poststimulus undershoot often appears as an apparent

lowering of the baseline after the first stimulus block, when the

undershoot has not fully resolved before the next stimulus block

begins. In general, to clearly distinguish the undershoot, the rest

block should be longer than the stimulus block. In the framework

proposed here, such transients have two distinct sources. The initial

dip is modeled as a slight delay (about 1 s) of the CBF response

compared to the CMRO2 response. The poststimulus undershoot

arises in the model because CBV is slower to recover than CBF

and CMRO2. Then if the oxygen extraction fraction returns to

baseline at the end of the stimulus, but the venous blood volume

remains elevated, total deoxyhemoglobin will be higher than

baseline, reducing the BOLD signal.

The fast response corresponding to the initial dip of the BOLD

signal was first detected in optical studies measuring deoxyhemo-

globin and oxyhemoglobin changes, and was interpreted as a rapid

increase of E. However, this interpretation is not fully consistent

with these early studies, which found that the fast response period

corresponded to an increase of deoxyhemoglobin but no change in

oxyhemoglobin (Jones et al., 2001; Malonek and Grinvald, 1996),

suggesting a combined change in CBV and E (Buxton, 2001). In

the original version of the balloon model (Buxton et al., 1998c), it

was noted that an initial dip of the BOLD signal also could result

from a rapid rise in blood volume with no change in E. A more

recent study, however, found a corresponding initial decrease in

oxyhemoglobin in conjunction with an increase in deoxyhemo-

globin, more clearly suggesting a change in E (Devor et al., 2003).

Although more data are clearly needed to resolve the experimental
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inconsistencies, we have chosen to model the initial dip as a

change in E, based on the recent experimental work.

Nonlinearity of the BOLD response

Friston et al. (1998) suggested that a large part of the

nonlinearity of the BOLD response arises from the transformation

of a CBF response to the BOLD signal change. In a subsequent

study, they showed that the Volterra kernel characterization of

experimentally observed nonlinearities could be accounted for with

the balloon model plus a linear transformation up to the CBF

response, again supporting the idea that the primary nonlinearity is

in the transformation from the CBF to the BOLD response (Friston

et al., 2000). In the current model, we also explicitly included an

additional nonlinearity of the neural response itself, allowing for an

initial sharp response followed by adaptation (a picture originally

proposed by Boynton et al., 1996). The two sources of nonlinearity

can be distinguished experimentally by whether the nonlinearity is

present in just the BOLD response or in both the BOLD and CBF

responses. For example, Miller et al. (2001) found that both visual

and motor cortices exhibited a nonlinear BOLD response, but only

the visual cortex showed a nonlinear CBF response.

The first source is modeled as a nonlinearity of the neural

response itself, and this nonlinearity should be present in both the

CBF and BOLD responses. This neural nonlinearity was modeled

loosely as an adaptation effect, in which the neural output

decreases over time to a lower plateau despite a constant excitatory

signal. In the model, we treat this neural output activity as the

relevant aspect of neural activity that drives the CBF and CMRO2

response. As noted, however, current evidence suggests that

synaptic activity, rather than spiking activity, is the primary drive

of the CBF response, and from energetic considerations excitatory

activity is more costly. For this reason, one should be careful of

making too literal an interpretation of the neural activity model.

The output of the model could represent local spiking activity, if

spiking activity is the primary drive for the CBF response. Or, if

synaptic activity is the primary drive, the model could represent the

input excitatory activity arriving from other neurons that adapt,

possibly elsewhere in the brain. Finally, the source of the

nonlinearity could be in the CBF response itself, and it is only

for convenience that we have isolated the nonlinearity in the neural

response and treated the CBF and CMRO2 responses as linear. To

untangle this ambiguity will require combined electrophysiology

and ASL measurements. Nevertheless, the model provides a simple

mechanism for introducing a nonlinearity in the CBF response.

The second source of nonlinearity is the BOLD ceiling effect.

Even an infinite CBF change could still produce only a finite

BOLD response, corresponding to removing all deoxyhemoglobin

from the voxel (the curvature of the BOLD signal vs. CBF lines in

Fig. 2). This effect produces an overprediction of the amplitude of

a long duration stimulus from a short duration stimulus when the

flow change due to the short stimulus is substantially weaker than

the flow change due to the longer stimulus. Effectively, the

extrapolation then covers a large change in CBF, so the curvature

shown in Fig. 2 becomes important. On the other hand, if the

shorter duration stimulus is long enough for the CBF response to

come close to the plateau value of the long duration stimulus, the

curvature in Fig. 2 becomes unimportant due to the small range of

CBF, and the response should be nearly linear. That is, by this

model, the BOLD ceiling effect should introduce a nonlinear

response when the shorter stimulus is narrower than the width of
the CBF response, which is about 4 s, in good agreement with

experimental data.

These two sources of nonlinearity interact in an interesting way

(Miller et al., 2001). If the neural nonlinearity is strong, then the

flow response to even a short duration stimulus is strong. In this

case the nonlinearity due to the BOLD ceiling effect should be

small, because extrapolation from the short stimulus response to

the long stimulus response is over a small range of flow change.

On the other hand, if the neural nonlinearity is weak, the flow

response to the short stimulus can be much weaker than the full

flow response to a sustained stimulus. However, in this case the

nonlinearity due to the BOLD ceiling effect will be larger. In other

words, when one source of nonlinearity is weak, the other tends to

be strong. Both produce similar nonlinearities in the BOLD

response, but only one of these (the neural nonlinearity) affects

the flow response (as illustrated in Fig. 5).

In this paper, we have not discussed nonlinearities of the timing

of the response, such as latency or response width, and such effects

have been reported. A recent proposal by Behzadi et al. (2004) is a

promising approach for accounting for these effects. Instead of

treating CBF as a linear convolution with the neural activity, it is

assumed that neural activity releases a vasoactive agent that alters

CBF, as in the model of Friston et al. (2000). The difference is that

the agent is modeled as acting on the compliance of the vessel. The

compliance in turn is treated as a combination of the smooth

muscle tension, which can be controlled by the agent, and a fixed

elastic component that becomes a more dominant factor in

determining compliance when the vessel is expanded. In this

way, the same concentration of the agent will have a greater effect

on CBF when the flow is lower, and potentially a different effect

on the nonlinearity of the response.

Effect of the physiological baseline on the BOLD response

Finally, we can use the BOLD signal model to consider the

effects of the physiological baseline on the BOLD response.

Experiments have found that when baseline CBF is increased by

breathing CO2 or administering acetazolamide, the BOLD

response is reduced. For example, Brown et al. (2003) found that

acetazolamide raised baseline CBF by 20% and the BOLD

response in the motor cortex with finger tapping was reduced by

35%, but the CBF change (DCBF) with activation stayed the same.

With CO2 inhalation CBF increases, but it is thought that

CMRO2 remains the same. This means that at this new baseline,

the oxygen extraction fraction E must be smaller than it was at the

previous baseline, and this implies that there is less deoxyhemo-

globin present at the new baseline. The scaling factor A in Eq. (8)

is thus reduced, so even if the fractional changes of the

physiological quantities were the same, the BOLD signal would

be reduced. However, in addition, the experimental data suggest

that DCBF remains constant despite the raised baseline CBF, so the

fractional CBF change is smaller at the elevated baseline, and this

will reduce the BOLD response further.

As an example, consider Eq. (8) with A = 0.1 and an activation

that produces a 30% change in CBF ( f = 1.3) and a 10% change in

CMRO2 (m = 1.1) from the initial baseline state. If the subject now

breathes CO2 that produces a 20% increase of baseline CBF with

no change in CMRO2, and then the activation experiment produces

the same CBF and CMRO2 changes, the BOLD signal change is

predicted to be reduced by 42%, in reasonable agreement with the

experimental data.
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The implication of this sensitivity of the BOLD signal to the

baseline state is that, potentially, many factors could alter the

baseline state of a patient group (e.g., anxiety or vasoactive

medications) that could make their BOLD responses significantly

different from a healthy population even if the neural responses in

the two groups are identical. For this reason, the DCBF measured

with ASL techniques may prove to be a much more robust

approach for quantitative fMRI studies.

While these considerations show how changes in the baseline

CBF can affect the BOLD response, we have not dealt with the

issue of what determines the baseline CBF. A recent theory that

requires further development is that CBF is regulated to maintain a

constant ratio of O2 to CO2 at the mitochondria to preserve the

thermodynamic free energy available from oxidative metabolism of

glucose (Buxton, 2004). The O2 concentration at the mitochondria

([O2]) is determined by E, so to increase the diffusive flux of O2

from capillaries to mitochondria, while maintaining [O2], requires

E to decrease with activation. In addition, increasing CO2 in the

blood degrades the [O2]/[CO2] ratio, and this is again restored by

decreasing E. Thus, the model predicts that CBF should increase

with CO2, and that an additional increase is required to meet the

needs of increased CMRO2. By this model, the additivity of CBF

changes due to activation and CO2 is a special property of CO2-

induced changes in the baseline. Future experiments are needed to

test whether this phenomenon also occurs when the baseline CBF

is altered by other means.

In conclusion, the proposed mathematical framework captures

several features that have been reported in experimental measure-

ments of the BOLD effect. However, this does not mean that all of

the physical ideas motivating the model are correct. More detailed

experiments using techniques that measure CBF, CBV, and even

field potentials will be necessary to test these basic mechanisms.

Nevertheless, the model provides a framework for simulating the

BOLD response or for fitting experimental data to quantitatively

characterize observed responses.
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