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Experimental designs for functional magnetic resonance imaging

(fMRI) experiments can be characterized by their estimation efficiency,

which is a measure of the variance in the estimate of the hemodynamic

response function (HRF), and their detection power, which is a measure

of the variance in the estimate of the amplitude of functional activity.

Previous studies have shown that there exists a fundamental trade-off

between efficiency and power for experiments with a single trial type of

interest. This paper extends the prior work by presenting a theoretical

model for the relation between detection power and estimation

efficiency in experiments with multiple trial types. It is shown that

the trade-off between efficiency and power present in multiple-trial-

type experiments is identical in form to that observed for single-trial-

type experiments. Departures from the predicted trade-off due to the

inclusion of basis function expansions and the assumption of correlated

noise are examined. Finally, conditional entropy is introduced as

measure for the randomness of a design, and an empirical relation

between entropy and estimation efficiency is presented.
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Introduction

Event-related experimental designs for functional magnetic

resonance imaging (fMRI) are useful for many cognitive experi-

ments, in part because of their ability to avoid the confounds, such

as habituation and anticipation, of more traditional block designs

(Rosen et al., 1998). In addition, event-related designs offer the

opportunity to rapidly estimate the hemodynamic response func-

tion (HRF) to a short stimulus. It has been previously shown that

for experimental designs with one trial type, there is a fundamental

trade-off between estimation efficiency, the ability to estimate the

HRF, and detection power, the ability to detect functional activa-
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tion (Birn et al., 2002; Liu et al., 2001). A third factor, the

perceived randomness of a design, is also important in selecting

a design. Randomness can be critical for reducing confounds that

arise when a subject can too easily predict the stimulus pattern, and

was found to increase with efficiency for experiments with one trial

type (Liu et al., 2001).

Block designs in which individual events are clustered into

‘‘on’’ periods of activation alternated with ‘‘off’’ control periods

offer nearly optimal detection power at the expense of poor

estimation efficiency and randomness. By contrast, designs in

which the interstimulus intervals between events are properly

randomized offer nearly optimal estimation efficiency (Dale,

1999) but relatively low detection power. To achieve intermediate

trade-offs between randomness, estimation efficiency, and detec-

tion power, other types of designs, such as stochastic, mixed, and

semi-random designs, have been proposed (Friston et al., 1999; Liu

et al., 2001). For example, a semi-random design can double the

detection power of a randomized design with only a 20% decrease

in estimation efficiency and a 10% decrease in randomness (Liu et

al., 2001). Such a design would be useful in experiments where a

degree of randomness is required for the cognitive paradigm but

where the emphasis is on detection of functional activity as

opposed to estimation of the HRF.

Although experimental designs with one trial type have found

widespread use, especially for the study of sensory areas, many

cognitive experiments require the use of designs with multiple trial

types. For example, in an fMRI study of face perception and

memory, Clark et al. (1998) used an experimental design with three

trial types (images of a target face, novel faces, and nonsense

scrambled faces) plus a blank screen image as a control state.

Experiments with multiple trial types allow for the statistical

assessment of each trial type versus the control state and also for

contrasts between trial types. As in experiments with a single trial

type, the goals of a multiple-trial-type experiment may require

either maximal detection power, maximal estimation efficiency,

maximal randomness, or some intermediate trade-off between

power, efficiency, and randomness.

In this paper, we consider the problems of estimation and

detection using the framework of the general linear model (GLM)

for experiments with multiple trial types. We present metrics for
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estimation efficiency and detection power and derive a model

describing the fundamental trade-off between the two metrics. We

then show that the form of the trade-off is identical to that

previously derived for experiments with a single trial type. We also

introduce conditional entropy as a measure for the randomness of a

design, and present an empirical relation between entropy and

estimation efficiency.

The relation between estimation efficiency and detection power

is further explored by considering a generalized definition of

estimation efficiency in which the HRF is assumed to be a linear

combination of basis functions. Basis function expansions repre-

sent one means of taking advantage of a priori knowledge about

the shape of the HRF (Friston et al., 1998). It is shown that

estimation efficiency and detection power represent two limiting

cases of the generalized definition, with estimation efficiency

corresponding to the use of as many basis functions as there are

unknown HRF parameters, and detection power corresponding to

the use of only one basis function. The efficiency obtained with

intermediate choices of basis function expansions is examined both

theoretically and with numerical simulations. Finally, the presence

of correlated noise in fMRI experiments is now well documented

(Burock and Dale, 2000), and we examine its effect on estimation

efficiency and detection power.

The implications of our findings for the optimal design of fMRI

experiments are explored further in the companion paper (Liu,

2004).
Theory

General linear model

The GLM provides a flexible framework for analyzing fMRI

signals (Dale, 1999; Friston et al., 1995). We assume that there are

Q trial types and HRFs of interest, with each HRF of length k. In

matrix notation, the signal model is

y ¼ Xh þ Sb þ n ð1Þ

where y is a N � 1 vector that represents the observed fMRI

time series, X is a N � (kQ) design matrix, h is a (kQ) � 1

vector with the Q HRFs, S is a N � l matrix consisting of

nuisance model functions, b is a l � 1 vector of nuisance

parameters, and n is a N � 1 vector that represents additive

Gaussian noise with covariance matrix �. The matrix square root

of � is denoted by �1/2, where � = �1/2(�1/2)T. The design

matrix may be written as X = [X1 X2
: : : XQ] and the vector of

HRFs as h = [h1
T : : : h2

T : : : hQ
T]T, where each N � k matrix Xq

consists of shifted binary stimulus patterns for the qth trial type

and hq is the k � 1 vector for the corresponding HRF.

Estimation efficiency

The minimum variance unbiased estimator (MVUB) of h can

be obtained by multiplying Eq. (1) by ��1/2 and then applying the

theory of oblique projections (Liu et al., 2001; Scharf and Fried-

lander, 1994; Seber, 1977) to yield:

ĥ ¼ ðXT
?X?Þ�1XT

?�
�1=2y ð2Þ

where X? = PS̃
?
��1/2X is the whitened design matrix with

whitened nuisance effects removed from each column by the
projectionmatrixPS̃
?
=I� S̃(S̃TS̃)�1S̃Twithwhitenednuisancematrix

matrix S̃ = ��1/2S. As a practical consideration, Eq. (2) may be

rewritten without matrix square roots as: ĥ = (XTKX)�1XKy,

where K = ��1 � ��1S(ST��1S)�1ST��1. The covariance of

the estimate is Cĥ = (X?
TX?)

�1 = J�1, where J = X?
TX? is the

Fisher information matrix for ĥ (Scharf, 1991). The Fisher infor-

mation matrix is a measure of the amount of information about

h that is present in the data (Cover and Thomas, 1991). In a later

section, we present an approximation for the information matrix

that is critical for elucidating the relation between estimation

efficiency and detection power.

In this paper, we consider the problem of estimating the HRF

for each trial type and all pairwise differences between HRFs. To

do so, we define the contrast matrix Lij = Dij � Ik, where

Dij ¼
di for i ¼ j

ðdi � djÞ for i p j

8<
: ð3Þ

is a 1 � Q row vector, di is a 1 � Q Kronecker delta row vector

with a 1 in the ith column and zeros everywhere else, Ik is the k � k

identity matrix, and the symbol � denotes a Kronecker product as

defined in Appendix A1. With this notation, the estimate of the

HRF for the ith trial type is given by ĥi = Liiĥ and the estimate of

the contrast between the HRFs for the ith and jth trial types is ĥij =

Lijĥ. The covariance for each contrast is

Cij ¼ LijCĥLT
ij ¼ LijðXT

?X?Þ�1LT
ij ð4Þ

with total variance given by the trace Tr[Cij] of the covariance. We

define the overall estimation efficiency as the inverse of the

variances averaged across trial types and contrasts:

ntot ¼
1

1

NQ

X
iVj

Tr½Cij

ð5Þ

where NQ = Q + Q(Q � 1)/2 is the number of trial types plus the

number of unique pairwise contrasts. Other metrics, such as the

minimum efficiency across contrasts nmin ¼ min
i;j

ð1=Tr½Cij
Þ, may

also be useful in quantifying the overall efficiency of a design.

Detection power

For each contrast of interest, the process of detection can be

formally stated as the test of the null hypothesis H0 : Lijh = 0. The

test can be accomplished with a F-statistic, which follows a non-

central F distribution with non-centrality parameter gij when the

null hypothesis is not true. In Liu et al. (2001), it was shown that

the non-centrality parameter serves as a metric for detection power.

The non-centrality parameter depends on the shape of the HRF

(Liu et al., 2001), and thus to assess the detection power of a

design, it is useful to make a priori assumptions about the shape of

the HRF for each trial type. This is equivalent to replacing each

HRF hi in the GLM with lih̄i, where h̄i is the assumed shape of the

HRF for the ith trial type and li is the response amplitude. With

this assumption, Eq. (1) may be rewritten as

y ¼ Zl þ Sb þ n ð6Þ
where Z = [z1

T z2
T : : : zQ

T]T, zi = Xih̄i is the regressor for the ith trial

type obtained by convolving the stimulus pattern with the assumed

HRF shape, and l = [l1 l2 : : : lQ]
T is the vector of unknown
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response amplitudes. The MVUB for the amplitude vector is l̂=
(Z?

TZ?)
�1Z?

T��1/2y, where Z? = PS̃
?
��1/2Z, and the variance for

the ijth contrast estimate l̂ij = Dijl̂ is Cij = Dij(Z?
TZ?)

�1Dij
T, where

Cij is a scalar. The efficiency for each contrast is defined as

nij ¼ ½DijðZT
?Z?Þ�1DT

ij 

�1 ð7Þ

The F statistic for the ijth contrast is

Fij ¼
N � Q� l

1

l̂2
ij½DijðZT

?Z?Þ�1DT
ij 


�1

RSS
ð8Þ

where RSS = (y � Zl̂� Sb̂)T (y � Zl̂� Sb̂) is the residual sum of

squares for the full model (Seber, 1977) with non-centrality

parameter (Liu et al., 2001; Scharf and Friedlander, 1994)

gij ¼ l2
ij½DijðZT

?Z?Þ�1DT
ij 


�1 ð9Þ

where lij = Dijl. Eqs. (7) and (9) show that the non-centrality

parameter is proportional to the efficiency of estimating response

amplitudes with a priori assumptions about the shape of the HRF

for each trial type (Birn et al., 2002; Liu et al., 2001).

In comparing designs, a reasonable a priori assumption is that

the shape of the HRFs is constant across trial types so that h̄i = h̄0,

where h̄0 is the assumed base HRF shape. In addition, it is useful to

normalize gij by lij
2h̄0

Th̄0 to obtain the Rayleigh quotient (Strang,

1980):

Rij ¼
½DijðZT

?Z?Þ�1DT
ij 


�1

h̄
T

0 h̄0

ð10Þ

We define the overall detection power as the harmonic mean of

the Rayleigh quotients

Rtot ¼
1

1

NQ

X
iVj

1

Rij

¼ 1

hT
0h0

NQ

X
iVj

Cij

ð11Þ

which is equivalent to the overall efficiency, normalized by h̄0
Th̄0,

for the amplitude estimates lij. As with estimation efficiency, other

metrics, such as the minimum detection power across contrasts

Rmin ¼ min
i;j

Rij may also be useful.

The structure of the Fisher information matrix X?
TX?

The key term in the expressions for estimation efficiency and

detection power is the Fisher information matrix X?
TX?. In this

section, we present an approximate model for the Fisher information

matrix. Recall that the Fisher information matrix is the inverse of the

covariance of the estimate ĥ. We focus our analysis on experimental

designs in which the stimuli from different trial types do not overlap.

That is, at each time point in the design, only one trial type may have

a stimulus present. Note that even with a non-overlapping design,

the HRFs from different trial types can overlap because the spacing

between stimuli can be smaller that the temporal widths of the

HRFs. We also assume that the number of events per trial type is the

same across trial types. Thus, for a design with N points, Q trial

types, and m events per trial type, there are N - Qm null events

represented by zeros in the design matrix.

The Fisher information matrix consists of block diagonal terms

of the form X?,q
T X?,q and block off-diagonal terms of the form

X?,q
T X?,r , where X?,q = PS̃

?
��1/2Xq is the qth submatrix of X?
and Xq was defined previously as the design matrix corresponding

to the qth trial type. For example, with two trial types, the Fisher

information matrix is

XT
?X? ¼

XT
?;1

XT
?;2

2
4

3
5½X?;1 X?;2
 ¼

XT
?;1X?;1 XT

?;1X?;2

XT
?;2X?;1 XT

?;2X?;2

2
4

3
5

The block diagonal terms are the autocorrelation matrices for

the whitened and detrended stimulus patterns for each trial type,

while the block off-diagonal terms are the cross-correlation

matrices for stimulus patterns of different trial types. If the

stimulus patterns for the different trial types are similar, that is,

they are all block designs or all random designs, then a

reasonable first order approximation is that the block diagonal

terms X?,q
T X?,q have similar forms and can be represented by an

average autocorrelation matrix Akc C
Q
SQ

q¼1X
T
?;qX?;q, where C is

a scaling factor. In addition, the block off-diagonal terms can

be approximated by q( q,r)Ak, where q( q,r) represents the cross-

correlation between the whitened and detrended stimulus patterns of

different trial types, that is, q( q,r) c (X?,q(:,1))
TX?,r(:,1), where

the notation X?,r(:,1) denotes the first column of X?,r. With these

approximations, the Fisher information matrix may be written as

the Kronecker product

XT
?X?cEQ � Ak ð12Þ

where EQ is a Q � Q matrix composed of the q( q,r) cross-

correlation terms.

To further motivate the form of the approximate model stated in

Eq. (12) and develop its properties, we consider two limiting cases:

(i) one unknown parameter per trial type but multiple trial types,

and (ii) multiple parameters per trial type but only one trial type. In

doing so, we assume that the additive noise is uncorrelated with

covariance matrix � = r2IN and that the nuisance model matrix S

consists of a single constant vector.

In the first limiting case, we examine the structure of the Fisher

information matrix when there is only one unknown parameter per

trial type, that is, k = 1 and Q > 1. For this case, Ak is a scalar so

that the Fisher information matrix reflects the form of EQ. The

elements of the Fisher information matrix are the inner products

between submatrices X?,q, which are N � 1 column vectors

representing the stimulus patterns with the means removed. It is

shown in Appendix A2 that the diagonal terms are X?,q
T X?,q =

Np(1 � p) and the off-diagonal terms are X?,q
T X?,r = �Np2,

where p = m/N is the frequency of occurrence of an event, and it

is assumed that p is the same for all trial types. Without loss of

generality, we may set the scalar term Ak equal to unity so that

X?
T X? = EQ � Ak = EQ, where

EQ ¼ Np �

1� p �p : : : �p

�p O O ]

] O O �p

�p : : : �p 1� p

2
666666664

3
777777775

¼ NpðIQ � p1Q1
T
QÞ ð13Þ

with 1Q defined as the Q � 1 vector with all elements equal to 1.

For the second limiting case, we assume that there is only one

trial type so that EQ is now a scalar and the Fisher information
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matrix reflects the form of Ak. Eq. (13) then simplifies to yield EQ

= Np(1 � p) and therefore X?
T X? cEQ � Ak = Np(1 � p)Ak. We

can infer several properties of Ak by rewriting the relation as Ak

¼ 1=ðNpð1� pÞÞXT
?X?. The first diagonal element of X?

TX? is the

magnitude squared of the detrended stimulus pattern which, as

stated above, is equal to Np(1 � p). The remaining diagonal

elements X?
T X? will be less than or equal to Np(1 � p) because

they are formed from shifted and detrended versions of the

stimulus pattern. The properties of the diagonal elements leads

us to conclude that Ak(1,1) = 1 and Ak(i,i) V 1. In addition, Ak is

symmetric and positive definite because of the quadratic form of

X?
T X?.

Having derived the properties of EQ and Ak from the limiting

cases, we may write the block diagonal and off-diagonal terms of

the Kronecker product as:

XT
?;qX?;rc

Npð1� pÞAk for q ¼ r

�Np2Ak for q p r

8<
: ð14Þ

As an example of the approximation, let us assume that the

length of the HRF is k = 3, the number of trial types is Q = 2, and

the average autocorrelation matrix for the two trial types is

Ak ¼

1 q q2

q 1 q

q2 q 1

2
66664

3
77775

where AqA < 1. The Fisher information matrix is given by:

XT
?X?cNp�

1� p �p

�p 1� p

2
64

3
75�

1 q q2

q 1 q

q2 q 1

2
6666664

3
7777775

¼ Np�

1� p qð1� pÞ q2ð1� pÞ �p �qp �q2p

qð1� pÞ 1� p qð1� pÞ �qp �p �qp

q2ð1� pÞ qð1� pÞ 1� p q2p �qp �p

�p �qp �q2p 1� p qð1� pÞ q2ð1� pÞ

�qp �p �qp qð1� pÞ 1� p qð1� pÞ

�q2p �qp �p q2ð1� pÞ qð1� pÞ 1� p

2
6666666666666666666664

3
7777777777777777777775

For q = 0, this reduces to
T
?X? ¼ Np�

1� p 0 0 �p 0 0

0 1� p 0 0 �p 0

0 0 1� p 0 0 �p

�p 0 0 1� p 0 0

0 �p 0 0 1� p 0

0 0 �p 0 0 1� p

2
66666666666666664

3
77777777777777775

;
X
which corresponds to the ideal case in which the detrended

stimulus pattern for each trial type is uncorrelated with all shifts

of itself and is uncorrelated with all non-zero shifts of the stimulus

patterns for other trial types.

Relation between efficiency and power

The approximations for the Fisher information matrix stated

in Eq. (14) may be used to derive the following expressions

for estimation efficiency and detection power from Eqs. (5) and

(11):

ntotc
N � f ðp;QÞ
Tr½A�1

k 

ð15Þ

RtotcN � f ðp;QÞ hT
0 Akh0

hT
0 h0

ð16Þ

where

f ðp;QÞ ¼ pNQ

Qð1� ðQ� 1ÞpÞ
1� Qp

þ QðQ� 1Þ
� � ð17Þ

Details of the derivation are provided in Appendix A4.

To understand the relation between efficiency and power, it

is useful to examine the distribution of the eigenvalues of Ak.

As previously discussed in Liu et al. (2001), Tr[Ak
�1] in Eq. (15)

is minimized when the eigenvalues of Ak are equal, whereas

h̄
T

0 Ak h̄0=h̄
T

0 h̄0 in Eq. (16) is maximized when there is only one

non-zero eigenvalue of Ak. To model the distribution of eigenval-

ues between these two extremes, we adopt the model presented in

Liu et al. (2001) in which the maximum eigenvalue is k1 = aM and

the remaining eigenvalues are k1 = (1 � a)M/(k � 1), where a
ranges from 1/k to 1 and M = Tr[Ak]. When a = 1, there is only one

non-zero eigenvalue, and when a = 1/k, the eigenvalues are

equally spread. This model results in the approximations

hT
0 Akh0

hT
0 h0

cRða; hÞ ¼ acos2h þ 1� a
k � 1

sin2h

� �
M ð18Þ

Tr½A�1
k 
cnðaÞ ¼ að1� aÞM

1þ aðk2 � kÞ ð19Þ

where h is the angle between h0 and the maximum eigenvalue

when a = 1 (Liu et al., 2001).

The angle h is used to empirically model the relative detection

power of block designs, which have very low estimation efficiency

(Liu et al., 2001). Eq. (18) states that when a = 1, the detection

power is equal to cos2h times the maximum attainable power, and

the estimation efficiency is identically zero. As an example, for a

design with one trial type, Liu et al. (2001) found that a block

design with 32 blocks (each block consisted of 2 s of stimulus

followed by 2 s of rest) had almost zero detection power

corresponding to an angle of 90j, while a design with 1 block

(64 s of stimulus followed by 64 s of rest) corresponded to an angle

of 45j and therefore achieved only half of the maximum attainable

power. To model the fact that the maximum detection power may

not be achievable with a binary stimulus pattern, it is useful to

define hmin as the minimum angle achievable between h̄0 and the

dominant eigenvector of Ak, such that the maximum achievable

detection power is cos2hmin times the maximum theoretical value
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(Liu et al., 2001). In practice, hmin is estimated by looking at the

maximum detection powers of low frequency block designs. When

the nuisance functions are limited to a constant term, the maximum

is typically achieved by a design with 1 block (see, e.g., Fig. 1 in

the Simulations section). For the range of parameters used in this

paper, hmin is about 45j.
Substitution of the approximations stated in Eqs. (18) and (19)

into Eqs. (15) and (16) yields the following expressions for

efficiency and power

RtotcN � f ðp;QÞRða; hÞ ð20Þ

ntotcN � f ðp;QÞnðaÞ ð21Þ

Because the leading term N�f ( p,Q) is common to both expres-

sions, the relation between efficiency and power is determined

solely by n(a) and R(a,h). These expressions are identical to those

previously presented for experiments with one trial type. Paramet-

ric curves demonstrating the fundamental trade-off between n(a)
and R(a,h) for various values of k are shown in Fig. 3 of Liu et al.

(2001).

Optimal frequency of occurrence

To maximize either efficiency or power, a necessary condi-

tion is to maximize f( p,Q) with respect to p. The maximum

occurs at a frequency of occurrence p = 1/(Q+1) and is given by

f ðp ¼ 1=ðQþ 1Þ;QÞ ¼ 1=ð2ðQþ 1ÞÞ . This is also the frequency

of occurrence for which the variance and detection powers for

individual events are equal to those for pairwise contrasts, that

is, Tr½Cij
 ji p j ¼ Tr½Cii
 and Rij ji p j¼ Rii for p = 1 / (Q + 1).

The fact that p = 1 / (Q + 1) equalizes efficiencies for both

individual event types and contrasts has been previously stated

using the concept of null events (Burock et al., 1998; Friston et

al., 1999).

In some experiments, it may be of interest to provide different

weights for the events and pairwise contrasts. As an example of

how this might be done, we add a weight term to f( p,Q) to

obtain

f ðp;Q; k1Þ ¼
pNQ

k1Qð1� ðQ� 1ÞpÞ
1� Qp

þ ð1� k1ÞQðQ� 1Þ
� � ð22Þ

where 0 V k1 V 1 and 1 � k1 are the relative weights for the

individual events and pairwise contrasts, respectively. For exam-

ple, if only individual events are of interest (k1 = 1), the optimal

frequency of occurrence is p ¼ ðQ�
ffiffiffiffi
Q

p
Þ=ðQ2 � QÞ for Q > 1,

whereas if only contrasts are of interest (k1 = 0), the optimal

frequency of occurrence is p = 1/Q. Note that ðQ�
ffiffiffiffi
Q

p
Þ=

ðQ2 � QÞ < ð1=ðQþ 1Þ < ð1=QÞ for Q > 1. For intermediate

values of k1, the optimal frequency of occurrence will lie in

the range ðQ�
ffiffiffiffi
Q

p
Þ=ðQ2 � QÞ < p < ð1=QÞ and is given by

p¼ Qð2k1 � 1ÞþQ2ð1� k1Þþ k
1=2
1 ðQð2k1 � 1ÞþQ2ð1� k1ÞÞ1=2

QðQ� 1Þðk1Q� Q� k1Þ
ð23Þ
Bounds on efficiency and power

At the overall optimal frequency of occurrence p = 1 / (Q + 1),

the efficiency and power are

ntotc
N

2ðQþ 1Þ nðaÞ ð24Þ

Rtotc
N

2ðQþ 1Þ Rða; hÞ: ð25Þ

The bound on estimation efficiency may be derived by setting

a = 1/k, which is the value for which the eigenvalues are equally

spread, and noting that M V k because Ak(i,i) V 1. The resultant

bound is

ntotV
N

2ðQþ 1Þ
M

k2
V

N

2ðQþ 1Þk ð26Þ

The bound on detection power may be derived by setting a = 1,

using the bound M V k, and also using the minimum angle hmin

defined below Eq. (19). The resultant bound is

RtotV
NM

2ðQþ 1Þ cos
2hminV

Nk

2ðQþ 1Þ cos
2hmin ð27Þ

where the cos2hmin term reflects the fact that the maximum

detection power achievable in practice may be less than the

maximum bound corresponding to hmin = 0. As in discussed in

Liu et al. (2001), the bound M V k is typically not a tight bound

because events in the delayed versions of each stimulus pattern are

shifted out in the design matrix. An approximation for M is given

in the appendix of Liu et al. (2001).

Departures from the predicted trade-off

Basis function expansions

The HRF observed in fMRI experiments exhibits a character-

istic shape that reflects the dynamics of the neural and vascular

systems. Although the exact shape can show great variability

across subjects (Aguirre et al., 1998), the HRF can generally be

characterized as a smooth function with a full width half-maximum

of about 5–6 s. One means of taking advantage of this a priori

knowledge is to confine the HRF to a subspace spanned by a set

of smooth basis functions (Dale, 1999). That is, we assume that

the HRF for each trial type can be expressed as hq = Bcq, where

B is a k � s matrix with s basis functions as columns with s < k

and cq is a s � 1 vector of expansion coefficients. Without loss of

generality, the basis functions can be chosen to be orthonormal, that

is, BTB = I. The estimate of the HRF vector is given by ĥ = B̃ĉ,

where B̃ = IQ � B and ĉ = (B̃TX?
TX?B̃)

�1B̃TX?
T��1/2y. The

covariance of the estimate is Cĥ = B̃(B̃TX?
TX?B̃)

�1B̃T, and estima-

tion efficiency is obtained by using this expression in Eqs. (4)

and (5).

The expression for detection power is unaffected by the use of a

basis function expansion, since we assume that the base HRF shape

h̄0 lies within the range of B. In other words, each HRF hi in the

GLM is replaced by lih̄0 = liBc̄0, where c̄0 is the vector of

expansion coefficients for h̄0, and the detection power is inversely

proportional to the estimates of the unknown amplitudes li.

age 21 (2004) 387–400 391
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To understand the dependence of estimation efficiency on the

choice of basis functions, it is instructive to first examine two

limiting cases. In the first limiting case where there is only one

basis function equal to the assumed HRF, that is, B = h̄0, it is

shown in Appendix A5 that estimation efficiency is equal to

detection power. This result emphasizes the fact that estimation

efficiency and detection power are both measures of statistical

efficiency and the distinction between the two measures depends

on the a priori assumptions about the shapes of the HRFs. As

defined in this paper, detection power always assumes complete

knowledge of the shape of the HRF, while estimation efficiency

can reflect a range of assumptions as expressed by the choice of

basis functions. It is also important to note that detection power is

inversely proportional to the average variance of the estimates of

the unknown amplitudes of the HRFs while estimation efficiency is

inversely proportional to the average variance of the unknown

coefficients of the HRFs.

In the second limiting case, when no a priori knowledge

about the shape of the HRF is assumed, the basis function matrix

is B = Ik. This is equivalent to assuming that no basis functions

are used and therefore estimation efficiency is given by Eq. (5).

Thus the fundamental trade-off between estimation efficiency and

detection power described in previous sections holds. In addition,

from the bounds stated in Eqs. (26) and (27), the maximum

estimation efficiency is equal to the maximum detection power

scaled by the factor 1/k2, that is, maxðntotÞ ¼ ð1=k2ÞmaxðRtotÞ.
For intermediate cases, where the dimension s of the subspace

spanned by the basis functions lies between 1 and k, it is shown in

Appendix A6 that the maximum achievable efficiency is k2/s2

greater than that obtained when no a priori information is assumed,

or equivalently, maxðntotÞ ¼ ð1=sÞ2maxðRtotÞ. The gain in efficiency
is due to two factors. A factor of k/s results from the fact that fewer

parameters are estimated when using basis functions. A second

factor of k/s reflects the gain that is possible with a design that

amplifies only those signals that lie within the basis function

subspace. Whether the second gain factor is attainable in practice

is an open question, but in general, we expect the gain to be less than

the maximum theoretical gain. Examples of the gains in efficiency

when using basis functions are provided in the Simulations section.

Correlated noise

In developing the theoretical approximations for efficiency and

power, we have assumed that the noise is uncorrelated. Although a

detailed treatment of the effects of correlated noise is beyond the

scope of this paper, it is possible to make some preliminary

observations. First, the Kronecker product approximation for the

Fisher information matrix implies that the effect of correlated

noise on multiple trial type experiments is fairly well reflected by

its effect on a single-trial-type experiment. For a single-trial-type

experiment, the estimation efficiency is ntot = 1/Tr[J�1], where the

Fisher information matrix is J = X?
TX? = XT(��1/2)TPS̃

?
��1/2X.

We have found that that the approximation J c XTPS̃
?
��1PS̃

?
X

works fairly well in practice. The approximation reflects the fact

that for parameters typically found in fMRI experiments, the noise

whitening step and the removal of low frequency nuisance terms

are, to first order, interchangeable filtering operations. Efficiency is

maximized when the eigenvalues of J are equally distributed. For a

given noise covariance matrix�, this can achieved by starting with

a design matrix X that achieves maximal efficiency when the noise

is uncorrelated, so that XTPS
?X has equal eigenvalues. This corre-

sponds to a stimulus pattern with a flat power spectrum (Haykin,
1996). The next step is to multiply the design by a coloring matrix

�1/2 so that the information matrix is XT(�1/2)TPS
?��1PS

?�1/2Xc
XTPS

?(�1/2)T��1�1/2PS
?X = XTPS

?X, where we have used the

approximate interchangeability of the coloring and nuisance term

removal steps. This corresponds to a stimulus pattern with a colored

power spectrum with the same spectral shape as the correlated

noise. Thus, efficiency is maximized by increasing the spectral

power of the stimulus pattern at frequencies where the noise power

is high and decreasing the spectral power at frequencies where the

noise power is low. In the temporal domain, this implies that the

efficiency is maximized by a stimulus pattern with a correlation

structure that is similar to that of the noise.

The detection power for an experiment with one trial type is

given by the Rayleigh quotient ðh̄T

0 Jh̄0Þ=ðh̄
T

0 h̄0Þcðh̄T

0 XTP?
S �

�1

P?
S Xh̄0Þ=ðh̄

T

0 h̄0Þ. The numerator has the form of a weighted inner

product (Kailath et al., 2000), and so to preserve the properties of

the Rayleigh quotient, it is reasonable to replace the denominator

with a weighted inner product h̄0
T(��1)kh̄0, where (��1)k is the

central k � k submatrix of ��1. In other words, multiplication of

the detection power by a factor of ðh̄T

0 h̄0Þ=ðh̄
T

0 ð��1Þk h̄0Þwill make

the metric approximately invariant with respect to �. This in turn

implies that the detection power will be reduced by a factor of

h̄
T

0 ð��1Þk h̄0=h̄
T

0 h̄0. The physical interpretation is that the detec-

tion power is to first order reduced by the amount to which the

whitening process removes energy from the HRF. As shown in

the Simulations section, this approximation works fairly well in

practice.

Conditional entropy

In addition to estimation efficiency and detection power, the

perceived randomness of an experimental design is an impor-

tant factor to consider when designing an experiment. Having a

sufficient degree of randomness can be critical for circum-

venting experimental confounds such as a habituation and

anticipation (Rosen et al., 1998). Controlling the randomness

of a design can also be useful for determining which brain

regions are most sensitive to changes in randomness (Bischoff-

Grethe et al., 2001). Various metrics for randomness or its

converse, predictability, have been presented in the fMRI

literature. For experiments with one trial type, Liu et al.

(2001) defined predictability as the average probability of

correctly guessing the next event in a design using a binary

string prediction program based on conditional probabilities.

Wager and Nichols (2003) introduced a counterbalancing score

which measured the deviation of the conditional probabilities of

a design with an arbitrary number of trial types from the

conditional probabilities of a perfectly random design. Bischoff-

Grethe et al. (2001) used mutual information as a measure of

predictability for an experimental design with four trial types.

These metrics are all related since they are based upon the

conditional probabilities associated with a design. In this paper,

we use conditional entropy as a measure of the perceived

randomness of a design. As with the previous metrics, it is

based upon conditional probabilities, and has the additional

advantage of being a fundamental and commonly used metric

for randomness (Cover and Thomas, 1991). The rth order

conditional entropy Hr is a measure of the average uncertainty

in the trial type of the next event given knowledge of the trial

types of the r previous events. For a stimulus pattern of the

form a1,a2,: : :,aN, where the trial type a1 for the ith event is
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drawn from an alphabet A, the expression for conditional

entropy is

Hr ¼ �
X
aiaA

X
ai�1aA

: : :
X
ai�raA

pðai�r; . . . ; ai�1; aiÞ

� log2pðai j ai�r; . . . ; ai�1Þ ð28Þ

where p(ai � r , : : :,ai � 1,ai) is the probability of the sequence

ai � r ,: : : ,ai � 1,ai of (r + 1) trial types occurring and p(aijai � r ,: : :,

ai � 1) is the conditional probability of trial type ai occurring after

the sequence of r trial types ai � r ,: : : ,ai � 1. For example, in an

experiment withQ = 4 trial types, the alphabet can be defined as A=

{0,1,2,3,4}, where 0 denotes the null trial type, p(0,3,4) is the

probability of observing a sequence consisting of a null trial type

followed by trial types 3 and 4, and p(0j3,4) is the conditional

probability of observing a null trial type after observing the

sequence consisting of trial type 3 followed by trial type 4. Note

that the order of the trial types matters, so that in general, p(0j3,4)
does not equal p(0j4,3). Conditional entropy is measured in bits and

corresponds to the average number of binary (e.g., yes/no) ques-

tions required to determine the next trial type given knowledge of

the r previous trial types (Cover and Thomas, 1991).

Conditional entropy is related to the mutual information metric

used in Bischoff-Grethe et al. (2001) by the expression Ir = log2(Q

+ 1)� Hr, where we have assumed that the probability for each trial

type is p = 1/(Q + 1) and the mutual information Ir has been

generalized to include r previous events. The predictability metric

used in Liu et al. (2001) is related through the expression Pr = 1/2Hr.

For example, a completely random sequence used in a 1 trial type

experiment has a predictability of 0.5 and a conditional entropy of 1

bit. The counterbalancing metric of Wager and Nichols (2003) uses

a sum of squared differences of conditional probabilities. It

increases with entropy, but determining an exact relation between

the two metrics is beyond the scope of this paper. Finally, it is

convenient to use the quantity 2Hr when comparing different

designs. This is the inverse of predictability and is in essence a

linear measure of randomness. Thus, a design with a conditional

entropy of 2 bits is twice as random as a design with an entropy of 1

bit, since there are on average twice as many random outcomes.

It was shown in a previous section that the relation between

estimation efficiency and detection power could be modeled by

examining the spread of the eigenvalues of the matrix Ak. In the

presence of uncorrelated additive noise and a constant nuisance

term, Ak is the average of the autocovariance matrices of the

stimulus patterns. For completely random stimulus patterns, Ak is

proportional to the identity matrix and therefore has an equal

spread of eigenvalues. As the patterns become less random, the

spread of the eigenvalues increases (Haykin, 1996). On the basis

of this qualitative description of the eigenvalue spread, we expect

that estimation efficiency should increase with entropy. For experi-

ments with one trial type, simulations have been used to show that

efficiency does increase with entropy (Liu et al., 2001). The

relation between efficiency and entropy can be further motivated

by noting that, for Gaussian sequences, the conditional entropy is

related to the determinant of the autocovariance matrix, which is

equal to the product of the eigenvalues (Cover and Thomas,

1991). As pointed out in Liu et al. (2001), the trace of the

autocovariance matrix is approximately constant across experi-

mental designs. With the trace of the autocovariance matrix held
constant, the product of the eigenvalues is maximized when the

eigenvalues are equally spread. As a simple example, consider a

matrix with two equal eigenvalues, both with value k0. An increase
in one eigenvalue by some amount D is balanced by a decrease in

the other eigenvalue by D. The product of the two unequal

eigenvalues is less than the product of the equal eigenvalues, since

(k0 � D)(k0 + D) V k0
2. Thus, for Gaussian sequences, an equal

spread of eigenvalues yields maximum entropy. Although the

stimulus patterns in this paper consist of a discrete number of trial

types and are not Gaussian sequences, the theoretical insight gained

from the Gaussian case provides useful support for the qualitative

description.
Simulations

To evaluate the performance of the proposed model and gain

further insight into the relation between estimation efficiency,

detection power, and conditional entropy, a series of numerical

simulations was performed. Estimation efficiencies and detection

powers were calculated using Eqs. (5) and (11) for a GLM with k =

15, N = 240, Q ranging from 2 to 5, and p = 1 / (Q + 1). The

conditional entropy was computed using Eq. (28). Semi-random

stimulus patterns were obtained by permuting block designs, which

were of the form ABCNABCN, where A, B, and C represent the

blocks for each trial type and N represents the blocks for the control

state. We used a range of block designs with 1 to n(Q) equally

spaced blocks per trial type, where n(Q) is the maximum number of

blocks and ranged from n(Q) = 20 for Q = 5 to n(Q) = 40 for Q = 2.

For example, for Q = 3, block designs with 1, 2, 4, 10, 15, and 30

equally spaced blocks were used. The 1-block design was of the

form ABCN, where each block contained 60 events, while the 2-

block design was of the form ABCNABCN, where each block

contained 30 events. There were a total of 200 permutation steps,

where at each step the positions of two randomly chosen events

were exchanged. A figure illustrating the permutation process is

provided in Liu (2004).

For calculation of detection power, h̄0 was a gamma density

function of the form h[ j] = (sn!)�1(( j � 1)Dt/s)ne�jDt/s for j z 1

and 0 otherwise (Boynton et al., 1996) with Dt = 1, s = 1.2, and n =

3. In addition, for each value of Q, 1000 random patterns with a

uniform distribution of trials types were generated and the pattern

with the greatest estimation efficiency was selected for display.

Designs based upon prime m-sequences have been previously

shown to achieve much higher estimation efficiency than designs

obtained via a random search, especially as the number of trial

types increases (Buracas and Boynton, 2002). The gain in effi-

ciency reflects the fact that the m-sequences exhibit almost ideal

autocorrelation properties, that is, they are nearly orthogonal to

time-shifted versions of themselves. The designs presented in

Buracas and Boynton (2002) were based on prime m-sequences

for 2, 3, and 5 levels, and the addition of a 2-level m-sequence to a

shifted version of itself to obtain a sequence with 4 levels. An

alternative for a 4-level sequence is to use a power of primes m-

sequence (e.g., 22 = 4) (Godfrey, 1993). We used the power of

prime sequence because its conditional entropy was slightly higher

than that obtained by summing shifted m-sequences. Designs for Q

= 2, 3, and 4 were generated using 3, 4, and 5 level m-sequences,

respectively, by using the m-sequence to assign the trial type for

each event in the design. For example, for a 3-level m-sequence of

the form : : :,0,1,2,1,: : :, a 0 corresponds to a null or control event,



Fig. 1. Simulation results for Q = 2 to 5 showing estimation efficiency versus detection power. The nuisance function matrix consists of a constant term and the

noise is assumed to be uncorrelated. Theoretical curves (solid lines) for h equal to 45j, 55j, 65j, 80j, and 90j (progressing from right to left) are also shown. For

the permuted block designs, each permutation path corresponds to one realization of the random permutation process, and the ‘ + ’ symbols represent designs

along that path. Each permutation path begins with a block design that exhibits nearly zero estimation efficiency.

Fig. 2. Relation between second and third order conditional entropy and estimation efficiency for Q = 2, 3, and 4. The vertical axis is in units of 2^Hr, where Hr

is the rth order conditional entropy. The upper bound on 2^Hr , corresponding to the maximum conditional entropy for a sequence with (Q + 1) discrete values,

is shown by the dashed line.
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Fig. 4. Effect of correlated noise for Q = 2 and 4 trial types. Theoretical curves (solid lines) for h equal to 60j and 90j are also shown.

Fig. 3. (a) Estimation efficiency versus detection power for Q = 2 trial types showing the effect of using basis functions on efficiency. Theoretical curves (solid

lines) for h equal to 45j and 90j are also shown. (b) Estimation efficiency versus 2^H2 for clustered m-sequences using basis functions, where H2 is the second

order conditional entropy. For the permuted block and clustered m-sequence designs, each path corresponds to one realization of the random permutation or

clustering process, and the ‘ + ’ symbols represent designs along that path. Each block permutation path begins with a block design that exhibits nearly zero

estimation efficiency, while the clustering m-sequence path begins with the m-sequence design.

T.T. Liu, L.R. Frank / NeuroImage 21 (2004) 387–400 395
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a 1 corresponds to trial type 1, and a 2 corresponds to trial type 2.

For Q = 2 and 3, the lengths of the 3- and 4-level m-sequences

were 242 and 255, respectively, and these sequences were truncat-

ed to N = 240 points. For Q = 4 , the 5-level 124 point m-sequence

was repeated and then truncated to 240 points. We are not aware of

a m-sequence-based design for Q = 5. Additional examples of m-

sequence-based designs are provided in Liu (2004).

To take advantage of the high detection power of a block design

and the high estimation efficiency of a m-sequence design, a mixed

design can be formed from the concatenation of a block design and

a m-sequence design (Liu et al., 2001). For Q = 2, 3, and 4 trial

types, mixed designs were formed by concatenating a 1-block

design of length N � L with a m-sequence design truncated to

length L, where L was varied from Q + 1 to N in increments of Q +

1 with N = 240. A figure showing mixed design examples is

presented in Liu (2004).

Fig. 1 shows the paths of estimation efficiency versus detection

power for m-sequence designs, randomly generated designs, mixed

designs, and various permuted block designs for Q = 2 to 5. For the

permuted block designs, the designs shown correspond to one

realization of the random permutation process, and the starting

points of the permutation paths are block designs, which exhibit

nearly zero estimation efficiency. Both estimation efficiency and

detection power are normalized by the maximum bounds presented

in Eqs. (26) and (27) with hmin = 0j. The dimension of the

nuisance function matrix was l = 1, corresponding to a constant

term for the nuisance function, and the noise was assumed to be

uncorrelated. Parametric curves showing the relation between n(a)
and R(a,h) as function of a with h equal to 45j, 55j, 65j, 80j, and
90jare also plotted. For Q = 2, the paths taken by the permuted

block designs are well modeled by the theoretical curves. The

agreement between the theoretical curves and the permuted block

designs decreases as the number of trial types Q increases. In

addition, the estimation efficiency of the randomly generated

designs decreases with respect to the theoretical bound as Q

increases. By contrast, the performance of the m-sequence-based

designs is very close to the theoretical bound. For Q = 3 and 4 , the

mixed designs come significantly closer to the theoretical bound

than the permuted block designs and thus lend support to the

validity of the theoretical model.

Entropy

The relation between conditional entropy and estimation effi-

ciency for Q = 2, 3, and 4 is shown in Fig. 2 for m-sequence-based

designs, randomly generated designs, and permuted 2-block

designs. For the permuted 2-block designs, the designs shown

correspond to one realization of the random permutation process.

The second order conditional entropies increase with estimation

efficiency and exhibit the approximate relation

Hrclog2ðQntot;norm þ 1Þ ð29Þ

where ntot,norm is the estimation efficiency normalized by its upper

bound. The entropies for the m-sequence-based designs approach

the upper bound of log2(Q + 1) bits, which corresponds to a

completely random sequence. Although not shown, the first order

conditional entropies show similar behavior. The third order con-

ditional entropies for Q = 2 also follow the approximate relation

stated in Eq. (29), but the behavior for Q = 3 and 4 is more

complicated. The permuted block designs increase with efficiency
but the slope of the relation is less than that predicted by Eq. (29),

and the maximum entropy achieved is comparable to that obtained

by the randomly generated sequence with the highest efficiency.

This behavior reflects the difficulty in obtaining sequences that

achieve the upper bound on conditional entropy using random

search techniques. For Q = 3, the m-sequence design is close to

the upper bound, but for Q = 4, the third order conditional entropy

for the m-sequence design is identically zero, indicating that this

sequence is completely predictable. The m-sequence for Q= 4 is

based on a m-sequence corresponding to a three-stage shift register

with pentary logic (Buracas and Boynton, 2002). Thus, knowledge

of the three previous trial types completely determines the subse-

quent trial type, and the third order conditional entropy is zero. In

practice, however, the perceived entropy of the sequence is likely to

be higher than the theoretical entropy. The theoretical entropy

assumes perfect memory of the frequency with which each trial

type occurred after any one of 53 = 125 combinations of three

previous trial types. A subject in an fMRI experiment is unlikely to

remember this many combinations. In general, we expect that the

appropriate order to use for the conditional entropy metric probably

decreases with the number of trial types, and that the first or second

order conditional entropy is probably a sufficient metric for most

studies with more than two trial types.

Basis functions

The effect of basis function expansions was assessed using

the basis set described in Friston et al. (1998). This basis set

consists of two gamma density functions and their temporal

derivatives, where the parameters of the gamma density functions

are Dt = 1, s = 1, and n = 3 and 7. The basis set was

orthogonalized using a singular value decomposition so that

BTB = I. Fig. 3a shows the estimation efficiency versus detection

power for Q = 2 trial types using permuted block designs (1 and

30 block) and m-sequence-based designs. In addition, a new

class of designs called clustered m-sequences was also used.

These designs start with the nearly optimal estimation efficiency

achieved by m-sequences and attempt to gradually reduce

estimation efficiency while increasing detection power. They

are generated by randomly permuting a m-sequence such that

at each permutation step, the sequence becomes more ‘‘blocky’’.

Details of the algorithm are provided in Liu (2004). For both the

permuted block and clustered m-sequence designs, the designs

shown correspond to one realization of the permutation or

clustering process, respectively. For permuted block sequences,

the permutation process begins with block designs that exhibit

minimum estimation efficiency, while for the clustered m-

sequences, the clustering process begins with the m-sequence

design. The estimation efficiency for the m-sequence-based

design with basis functions is increased by a factor of approx-

imately k/s = 15/4 = 3.75 with respect to the efficiency without

basis functions. This is in agreement with the expected gain due

to the decrease in the number of parameters. Clustered m-

sequences offer significant increases in estimation efficiency,

achieving up to 1.9 times greater efficiency than the m-sequence

design, as compared to the maximal theoretical gain of 3.75. At

the point of maximal efficiency, the clustered m-sequence design

also achieves more than double the detection power of the m-

sequence. The entropy is significantly decreased, however, with

the maximal efficiency design resulting in a 33% decrease in

randomness with respect to the m-sequence.
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Correlated Noise

For simulations with correlated noise, we adopted the noise

covariance model presented in Burock and Dale (2000) which has

the form RN[n] = r2(kd[n] + (1 � k)qjnj) and parameters q = 0.88

and k = 0.75. The effect of correlated noise is shown in Fig. 4 for

experiments with two and four trial types. The maximum estimation

efficiency is higher in the presence of correlated noise as compared

to the uncorrelated noise case and in fact exceeds the theoretical

bound. This effect has been previously reported in Birn et al. (2002)

and Buracas and Boynton (2002). Note, however, that this effect

assumes that the total noise variance is constant, such that the

correlated noise has more energy at low frequencies and less at

higher frequencies as compared to the uncorrelated noise case.

Another noise normalization approach, such as matching the

variance of the high frequency components, would result in higher

total noise variance and hence a reduction in the maximum

estimation efficiency in the presence of correlated noise. In the

presence of correlated noise, clustered m-sequence designs provide

higher detection power and equal or greater estimation efficiency

than the m-sequence-based designs. The detection power of all

designs is greatly reduced in the presence of correlated noise, as can

be seen by comparing the horizontal axes in Fig. 4 versus those in

Fig. 1. The reduction factor is approximately equal to the term

h̄0
T(��1)kh̄0/(h̄0

Th̄0) presented in the Theory section. For compari-

son, the theoretical curves have also been scaled by this factor.
Discussion

Statistical efficiency is a critical factor to consider in the design

of fMRI experiments because it has a direct impact on the quality of

the acquired data. Two important metrics of statistical efficiency are

detection power and estimation efficiency. Detection power is

important in experiments that focus on mapping the loci of activa-

tion or that attempt to compare the magnitudes of activation between

different brain regions, tasks, or populations. As stated in the Theory

section, detection power is equivalent to the estimation efficiency

for response amplitudes. In the context of this paper, estimation

efficiency refers to the ability to estimate the shapes of the HRFs and

is important for experiments that try to assess the variation of the

shape across brain regions, tasks, or patient populations. A third

metric is the conditional entropy of a design, which is a measure of

perceived randomness. Maximizing the entropy can be critical for

minimizing confounds such as habituation and anticipation. An

empirical relation between conditional entropy and estimation

efficiency was presented. The combination of this empirical relation

with the theoretical model for the relation between estimation

efficiency and detection power offers a comprehensive framework

for understanding the trade-off between the three metrics. The

optimum balance depends on the goals and constraints of the

experiment. For example, an experiment may simultaneously re-

quire a high degree of entropy to minimize confounds and sufficient

detection power to compare response amplitudes, while having no

requirement on desired estimation efficiency.

The theoretical model presented in this paper provides insight

into the relation between detection power and estimation efficiency

for experiments with multiple trial types. In particular, it was shown

that the fundamental trade-off between efficiency and power has the

same form as that previously demonstrated for experiments with a

single trial type (Liu et al., 2001). The model shows good agreement
with numerical simulations for experiments with two trial types. For

experiments with three and four trial types, there is greater deviation

between the theoretically predicted performance and that obtained

by permuted block designs, but mixed designs come reasonably

close to the predicted trade-off in regions where the permuted block

designs do not perform well. One possible explanation for the

observed discrepancy is that the model makes a number of approx-

imations that become less valid as the number of trial types

increases. A second explanation is that the predicted theoretical

performance becomes harder to achieve with an increasing number

of trial types. The second explanation is supported by the observa-

tion that m-sequence designs come very close to achieving the

bound on estimation efficiency. This contrasts sharply with the

decrease in the efficiency of randomly generated designs as the

number of trial types increases. As pointed out by Buracas and

Boynton (2002), the probability of attaining the estimation effi-

ciency of a m-sequence design via a random search of designs is

very low. This probability diminishes rapidly with the number of

trial types since the number of possible designs is (Q + 1)N. The

second explanation is also supported by the observation that

increasing the search space for both permuted block and clustered

m-sequence designs yields designs that come closer to the theoret-

ical bounds (Liu, 2004). Other approaches, such as genetic algo-

rithms (Wager and Nichols, 2003), may also be useful in coming

closer to the bounds.

The incorporation of basis function expansions was shown to

lead to a generalized definition of estimation efficiency that

includes the definitions of estimation efficiency and detection

power presented in Eqs. (5) and (11) as specific cases. Thus,

detection power is equal to the generalized estimation efficiency

when there is only one basis function, and estimation efficiency is

equal to the generalized estimation efficiency when the set of basis

functions consists of k Kronecker delta functions. The upper bound

on estimation efficiency was shown to be proportional to the ratio

1/s2, where s is the number of basis functions used. In practice, the

gain in estimation efficiency obtained by going to a smaller set of

basis functions is less than the expected theoretical gain. A

theoretical model that better explains the observed gain in effi-

ciency is a topic for future work. In addition, the selection of an

optimal set of basis functions that spans the space of all possible

hemodynamic responses with the fewest number of dimensions is

an area for further investigation.

With either basis function expansions or the assumption of

correlated noise, the maximum estimation efficiency is not

achieved by m-sequence-based designs, but by designs that take

advantage of either the a priori assumptions about the HRF or the

structure of the noise. In addition, these designs also have higher

detection power since they are less random. As an example, a new

class of designs based on clustered m-sequences was found to offer

both higher estimation efficiency and detection power than m-

sequence designs in the presence of basis function expansions or

correlated noise. The construction of these designs is described in

greater detail in Liu (2004).

The analysis in this paper has focused on non-overlapping

designs in which the stimuli from different trial types do not

overlap, although the responses from the stimuli may overlap due

to the long temporal duration of the HRFs. Such designs are widely

used in cognitive experiments, for example, Clark et al. (1998).

Overlapping designs similar to those used for receptive field

mapping in vision science have been also been proposed (Buracas

and Boynton, 2002). In these designs, there is no constraint on the
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overlap of stimuli from different trial types. Semi-overlapping

designs in which there can be some overlap between stimuli from

different trial types may also be useful, especially for modeling

experiments in which cognitive trial types overlap in some restrict-

ed fashion. For example, in a decision-making experiment, it may

be useful to explicitly model an overlap occurring between the end

of the information assessment stage and the beginning of the

decision-making stage. The performance of overlapping and

semi-overlapping designs is an area for further investigation.

In addition, the analysis presented here has focused on binary

designs, where each trial type may be either present or absent. In

certain experiments, such as those focused on the visual system,

the stimulus for each trial type may take on multiple discrete levels

or a range of continuous levels. An extension of the current

framework to handle designs with both multiple trial types and

levels would be useful for these experiments.

Finally, our analysis has assumed that the neuronal and

hemodynamic pathway from the stimulus to the measured

response is well modeled by a linear time-invariant system, so

that the measured response is the convolution of the stimulus

with the HRF. There is growing evidence that nonlinear models,

such as Volterra kernel expansions (Friston et al., 1998; Liu et

al., 2002), provide a better representation and an extension of the

current framework to incorporate nonlinear effects would be

useful.
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Appendix A

A.1 . Kronecker product definitions and identities

The Kronecker product is defined as (Brewer, 1978; Moon and

Stirling, 2000):

A � Bu

a11B a12B : : : a1qB

a21B O ]

] O ]

ap1B : : : : : : apqB

2
666666664

3
777777775

ðA1Þ

Useful identities are:

ðA � BÞ�1 ¼ A�1 � B�1 ðA2Þ

trace½A � B
 ¼ trace½A
trace½B
 ðA3Þ

ðA � BÞðC � DÞ ¼ AC � BD ðA4Þ
ðA � BÞT ¼ AT � BT ðA5Þ

A.2 . Derivation of X?,q
T X?,r
When q = r, the product X?,q
T X?,r is the variance of a binary

stimulus pattern with m events out of N total time points. This

variance is (1 � m/N)m. When q p r, X?,q
T X?,r is the dot product,

after removal of constant terms, between two stimulus patterns,

each with m events, where the events of the two patterns do

not overlap. The dot product consists of 2m terms of the form

(�m/N)(1 � m/N) and N � 2m terms of the form m2/N2 yielding

the result �m2/N.

A.3 . Inverse of EQ

The inverse of EQ can be derived with the matrix inversion

lemma (Moon and Stirling, 2000)

ðA þ BCDÞ�1 ¼ A�1 � A�1BðC�1 þ DA�1BÞ�1DA�1

to obtain

E�1
Q ¼ 1

pNð1� QpÞ

1� ðQ� 1Þp p : : : p

p O O ]

] O O p

p : : : p 1� ðQ� 1Þp

2
666666664

3
777777775

¼ 1

pNð1� QpÞ ðð1� QÞIQ þ p1Q1TQÞ

A.4 . Derivation of expressions for efficiency and power

The expression for estimation efficiency contains Tr[Cij] terms

that, with the use of Kronecker product identities, may be

expanded as

Tr½Cij
 ¼ Tr½LijðXT
?X?Þ�1LT

ij 

cTr½ðDij � IkÞðE�1

Q � A�1
k ÞðDT

ij � IkÞ

¼ Tr½ðDijE

�1
Q DT

ij Þ � A�1
k 


¼ Tr½DijE
�1
Q DT

ij 
Tr½A�1
k 


where the Kronecker product approximation for the Fisher

information matrix is used in the second line. Substitution of

the expression for EQ
�1 from Appendix A3 yields

Tr½Cij
 ¼

1� ðQ� 1Þp
Npð1� QpÞ Tr½A�1

k 
 for i ¼ j

2

Np
Tr½A�1

k 
 for ip j

8>><
>>:

Substitution of the Tr[Cij] terms into Eq. (5) leads to Eq. (15).

The expressions for detection power (Eqs. (10) and (11))

contain the term (Z?
T Z?)

�1.

With the assumption that h̄i = h̄0, we may write Z?= [X?,1h̄1
X?,2h̄2 : : : X?,Qh̄Q] = X?(IQ � h̄0).
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Applying the Kronecker product approximation for the Fisher

information matrix, and identities (A4) and (A5), we find that

Rij ¼ ðDijðZT
?Z?Þ�1DT

ij Þ
�1ðh̄T

0 h̄0Þ�1

¼ ðDijððIQ � h̄0ÞTXT
?X?ðIQ � h̄0ÞÞ�1DT

ij Þ
�1ðh̄T

0 h̄0Þ�1

cðDijððIQ � h̄0ÞT ðEQ � AkÞðIQ � h̄0ÞÞ�1DT
ij Þ

�1ðh̄T

0 h̄0Þ�1

¼ ðDijðEQh̄
T

0 Ak h̄0Þ�1DT
ij Þ

�1ðh̄T

0 h̄0Þ�1

¼ ðDijE
�1
Q DT

ij Þ
�1h̄

T

0 Ak h̄0ðh̄
T

0 h̄0Þ�1

¼

Npð1� QpÞ
1� ðQ� 1Þp

h̄
T

0Akh̄0

h̄
T

0 h̄0

for i ¼ j

Np

2

h̄
T

0 Ak h̄0

h̄
T

0 h̄0

for i p j

8>>>>><
>>>>>:

Substitution of the Rij terms into Eq. (11) yields Eq. (16).

A.5 . Estimation efficiency equals detection power when B = h̄0

With the assumption that there is only one basis function such

that B = h̄0, the trace of each covariance term may be written as:

Tr½Cij
 ¼ Tr½LijB̃ðB̃
T

XT
?X?B̃Þ�1B̃

T
LT
ij 


¼ Tr½LijðIQ � h̄0ÞðZT
?Z?Þ�1ðIQ � h̄

T

0 ÞLT
ij 


¼ Tr½ðDij � IkÞððZT
?Z?Þ�1 � h̄0h̄

T

0 ÞðDT
ij � IkÞ


¼ Tr½ðDijðZT
?Z?Þ�1DT

ij Þ � ðh̄0h̄
T

0 Þ


¼ DijðZT
?Z?Þ�1DT

ij Tr½h̄0h̄
T

0 


¼ DijðZT
?Z?Þ�1DT

ij h̄
T

0 h̄0 ¼ h̄
T

0 h̄0Cij

Substitution of the Tr[Cij] terms into Eq. (5) yields Eq. (11), so that

ntot = Rtot. Note that this proof does not rely on the Kronecker

product approximation for the Fisher information matrix.

A.6 . Gain in estimation efficiency obtained with basis function

expansions

When basis function expansions are used, the Tr[Cij] terms can

be written as

Tr½Cij
 ¼ Tr½LijB̃ðB̃
T

XT
?X?B̃Þ�1B̃

T
LT
ij 


cTr½LijB̃ððIQ � BT ÞðEQ � AkÞðIQ � BÞÞ�1B̃
T

LT
ij 


¼ Tr½LijðIQ � BÞðEQ � ðBTAkBÞÞ�1ðIQ � BT ÞLT
ij 


¼ Tr½ðDij � IkÞðE�1
Q � ðBðBTAkBÞ�1BT ÞÞðDT

ij � IkÞ

¼ Tr½ðDijE

�1
Q DT

ij Þ � ðBðBTAkBÞ�1BT Þ

¼ Tr½DijE

�1
Q DT

ij 
Tr½BðBTAkBÞ�1BT 

¼ Tr½DijE

�1
Q DT

ij 
Tr½ðBTAkBÞ�1


where we have made use of Kronecker product approximation for

the Fisher information matrix, the trace identity Tr[AB] = Tr[BA]

and our assumption that BTB = I. The final expression is identical

to the expression for Tr[Cij] without the use of basis functions with

the term Tr[Ak
�1] replaced by the term Tr[(BTAkB)

�1]. The gain in
efficiency can be assessed by comparing these terms. In the

absence of basis functions, the optimal design has Ak = Ik. The

gain in efficiency observed by using this design with basis

functions is then Tr½I�1
k 
=Tr½ðBT IkBÞ�1
 ¼ k=s , which reflects

the fact that s=k fewer parameters are estimated. Estimation

efficiency can be further increased by choosing a design that

minimizes Tr[(BTAkB)
�1]. For the optimal design, the eigenvalues

of BTAkB are equally distributed and have maximum amplitude

(Liu et al., 2001). Consider the eigen decomposition Ak = V	VT,

where V is the unitary matrix composed of the eigenvectors of Ak

and 	 is the diagonal matrix with eigenvalues of Ak. The

eigenvalues of BTAkB = BTV	VTB can be maximized if the first

s eigenvectors of Ak are equal to the columns of B. Then VTB ¼
Is

0ðk�sÞ�s

�

 and BTV	VTB = 	s, where 	s is the s � s diagonal

matrix composed of the first s eigenvalues of Ak. Thus, the

eigenvalues of BTAkB are given by the first s eigenvalues of Ak.

From the definition of Ak in the section on the Fisher information

matrix, the upper bound on the sum of eigenvalues of Ak is

�k
i¼1ki ¼ Tr½Ak 
Vk. Equal distribution of this sum over the first s

eigenvalues yields Tr½ðBTAkBÞ�1
 ¼ �s
i¼1

1
ki
¼ �s

i¼1
s
k
¼ s2

k
.

For comparison, when no basis functions are used, efficiency

is maximized when the eigenvalues of Ak are equally distributed,

or equivalently Ak = Ik, so that Tr[Ak
�1] = k. Thus, the relative gain

in maximum achievable efficiency is given by minðTr½A�1
k 
Þ=min

ðTr½ðBTAkBÞ�1
Þ ¼ k2=s2.
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