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A signal processing model for arterial spin labeling functional MRI
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A model of the signal path in arterial spin labeling (ASL)-based

functional magnetic resonance imaging (fMRI) is presented. Three

subtraction-based methods for forming a perfusion estimate are

considered and shown to be specific cases of a generalized estimate

consisting of a modulator followed by a low pass filter. The

performance of the methods is evaluated using the signal model.

Contamination of the perfusion estimate by blood oxygenation level

dependent contrast (BOLD) is minimized by using either sinc

subtraction or surround subtraction for block design experiments

and by using pair-wise subtraction for randomized event-related

experiments. The subtraction methods all tend to decorrelate the 1/f

type low frequency noise often observed in fMRI experiments. Sinc

subtraction provides the flattest noise power spectrum at low

frequencies, while pair-wise subtraction yields the narrowest auto-

correlation function. The formation of BOLD estimates from the ASL

data is also considered and perfusion weighting of the estimates is

examined using the signal model.
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Introduction

Perfusion-based functional magnetic resonance imaging

(fMRI) using arterial spin labeling (ASL) methods has the

potential to provide better localization of the functional signal

to sites of neural activity as compared to blood oxygenation level

dependent (BOLD) contrast fMRI (Duong et al., 2001; Golay

et al., 2004; Luh et al., 2000). In an ASL experiment, a series of

control images and tag images in which arterial blood is either

fully relaxed or magnetically inverted, respectively, is acquired.

Typically, the control and tag images are acquired in an

interleaved fashion, and a perfusion time series can be formed
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by subtracting the tag images from the control images. The three

subtraction methods that are most widely used in practice are (a)

a simple pair-wise subtraction of control and tag images, (b) a

surround subtraction in which the difference between each image

and the average of its two nearest neighbors is formed, and (c) a

subtraction of sinc-interpolated control and tag images. Surround

subtraction was introduced to reduce transient artifacts due to

blood oxygenation level dependent (BOLD) weighting of the

acquired images (Wong et al., 1997). Aguirre et al. (2002) later

showed using simulations of block designs that sinc subtraction

performed slightly better than surround subtraction and signifi-

cantly better than pair-wise subtraction with respect to BOLD

contamination effects.

An advantage of the subtraction process in ASL is that it tends

to whiten the low frequency 1/f noise typically observed in fMRI

experiments (Aguirre et al., 2002). Using experimental data

acquired at 1.5 and 4 T, Wang et al. (2003) found that sinc

subtraction and pair-wise subtraction provided relatively flat

power spectra in the frequency range below 0.10 Hz while

surround subtraction showed a small increase in power at lower

frequencies. A qualitative explanation of the noise whitening

process was provided based upon treating the pair-wise sub-

traction process as a temporal derivative operator.

Despite the widespread use of subtraction-based methods for

ASL, a theoretical model that would allow for the quantitative

assessment of the various methods has been lacking. Here we

present a model of the ASL signal processing chain that allows

for an analytical evaluation of the performance of the various

subtraction methods. We show that pair-wise, surround, and sinc

subtraction are all specific cases of a general subtraction method

that differ only in the selection of a low pass filter. We then apply

the model to derive expressions for the BOLD contamination of

the perfusion estimate and for the perfusion weighting of the

BOLD estimate formed from the running average of the tag and

control images. Using these expressions, we describe the selection

of an optimal filter to minimize BOLD contamination and

perfusion weighting. We also derive an expression for the

temporal autocorrelation of the noise in the perfusion signal. A

preliminary version of this work was presented in Liu and Wong

(2004).
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Theory

Signal processing model

There are currently three major classes of arterial spin labeling

methods: (a) pulsed ASL in which a brief radio frequency pulse

is used to invert the magnetization of arterial blood within a thick

slab proximal to the imaging region, (b) continuous ASL in

which a long radio frequency pulse is used to invert spins as they

flow through a thin plane proximal to the imaging region, and (c)

velocity-selective ASL in which velocity-selective radio fre-

quency pulses are used to saturate arterial spins flowing above

a specified cut-off velocity (Duhamel et al., 2003; Wong et al.,

1997). At present, the majority of ASL perfusion experiments

utilize pulsed ASL, in part because of its ease of implementation.

Although the model we present is generally applicable to all three

classes of ASL methods, it does include details, such as the use

of a presaturation pulse, that are specific to pulsed ASL

experiments.

A signal processing model that captures the essential features of

a pulsed ASL experiment is shown in Fig. 1. The measured time

series y[n] is the sum of the interleaved BOLD-weighted tag and

control images plus an additive noise term e[n] with autocorrelation

function q[n]. Multiplicative BOLDweighting is represented by the

time series b[n] = exp(�TE(R2,0* + DR2* [n])) where TE is the echo

time of the image, R2,0* is the apparent transverse relaxation rate at

rest, and DR2* [n] is the time-varying change in relaxation rate with

functional activation. Because the percent change in the signal is

typically on the order of a few percent, it is useful to approximate

the time series as the sum b[n]c b0 + Db[n] of a constant term b0 =

exp(�R2,0* TE) representing baseline BOLD weighting and a time-

varying term Db[n] = �b0DR*2[n]TE representing the stimulus-

related changes.

The term M[n] represents the magnetization of static tissue in

the imaging volume of interest. If a presaturation pulse is applied at

time TIp prior to the image acquisition, the static tissue term is

multiplied by a saturation recovery term (1 � be�TIp / T1) with b = 1

and tissue longitudinal time constant T1. If a presaturation pulse is

not used and the tagging process does not perturb the static tissue

magnetization, then b = 0. If the tagging process leaves static tissue

inverted, then b = 2 and TIp = TI.

The term q[n](1 � a(1 + (�1)n )e�TI /T1B) represents the

interleaved control and tag perfusion terms where q[n] = Aeff

CBF [n] is proportional to the amount of blood that perfuses the

tissue (with CBF denoting cerebral blood flow) and Aeff reflects
Fig. 1. Block diagram of the arteri
the details of the pulsed ASL pulse sequence used. In the control

state (n odd), the arterial blood is assumed to be fully relaxed. In

the tag state (n even), the magnetization of arterial blood is

assumed to be inverted with inversion efficiency a at inversion

time TI prior to image acquisition, and recovers with time

constant T1B.

The measured time series may be written as the sum y[n] =

yb[n] + yq[n] + e[n] of an unmodulated term

yb n½ � ¼ b n½ � sMM n½ � þ sqq n½ �
� �

ð1Þ

where sM = 1 � be�TIp/T1 and sq = 1 � ae�TI/T1B, a modulated

term

yq n½ � ¼ � 1ð Þn þ 1
b n½ �q n½ �ae�TI=T1B ; ð2Þ

and the additive noise term. The unmodulated term is the sum of

BOLD-weighted static tissue and perfusion components, while

the modulated term is a BOLD-weighted perfusion signal.

Perfusion estimates attempt to attenuate the unmodulated term

yb[n] while preserving the modulated term yq[n]. In contrast,

BOLD estimates strive to maximize the unmodulated term and

minimize the modulated term.

Perfusion and BOLD estimates

Subtraction-based perfusion estimates are based upon differ-

ences of control and tag images. In pair-wise subtraction, the

estimates are the simple differences of adjacent control and tag

images, for example, y[1] � y[0], y[1] � y[2], y[3] � y[2]. In

surround subtraction, the estimates are the differences between

each image and the average of its nearest neighbors, for example,

y[1] � ( y[0] + y[2])/2, ( y[1] + y[3])/2 � y[2]. Both of these

estimates may be written in the form

q̂q n½ � ¼ � 1ð Þn þ 1
y n½ �

i
4 g n½ �

h
ð3Þ

where g[n] is a low pass interpolation filter that depends on the

subtraction method used and * denotes convolution (defined as

y n½ � � g n½ � ¼
Pl

k ¼ �l y k½ �g n� k½ �; Oppenheim and Schafer,

1989). For pair-wise subtraction g[n] = [1 1] and for surround

subtraction g[n] = [1 2 1]/2. A useful generalization of the

subtraction process can be gained by dividing the measured time

series into a control time series ycon[n] = y[2n + 1] and a tag time

series ytag[n] = y[2n] (Liu et al., 2002). Interpolated versions of
al spin labeling signal path.



Fig. 2. (a) Block diagram of the perfusion estimate. (b) Equivalent form of

the perfusion estimate (see Appendix for proof of equivalence). Down-

sampling and upsampling operators are denoted by A2 andz2, respectively.
Advance and delay operators are denoted by the Kronecker delta functions

d[n + 1] and d[n �1], respectively. (c) Generalized form of the perfusion

estimate to obtain increased output sampling rate. (d) Special case of the

generalized form. This is equivalent to the generalized form when N = M/2

and g[n] = g̃1[n] * g2[n], where g̃1[n] is obtained by upsampling g1[n] by a

factor of N.
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the control and tag time series, denoted as ŷcon[n] and ŷtag[n],

respectively, are formed by upsampling and convolving with the

filter g[n]. The perfusion estimate is then obtained from the

difference

q̂q n½ � ¼ ŷycon n½ � � ŷytag n½ � ð4Þ

of the interpolated time series. As shown in the Appendix,

this estimate is identical to that presented in Eq. (3). A block

diagram of the interpolation process is shown in Fig. 2b. Sinc

subtraction corresponds to the choice of g[n] = sinc[n/2] for the

interpolation filter where sinc[n] = sin(pn)/(pn) as defined in

Bracewell (1965).

In a manner analogous to the formation of perfusion

estimates, estimates of the BOLD-weighted signal are formed

from the sums of the tag and control images, with pair-wise

addition having the form y[1] + y[0], y[1] + y[2], y[3] + y[2],

and surround addition having the form y[1] + ( y[0] + y[2])/2,

( y[1] + y[3])/2 + y[2]. The general form of these estimates is

b̂b n½ � ¼ y n½ � 4 g n½ �; ð5Þ

which may also be written as the sum

b̂b n½ � ¼ ŷycon n½ � þ ŷytag n½ � ð6Þ

of the interpolated control and tag time series.

Additional interpolation of the estimates

The temporal resolution of the estimates discussed so far is

equal to the repetition time (TR) of the image acquisition. For

conventional ASL, the TR is typically 2 s or greater, while for

turbo-ASL experiments the TR can be as short as 1 s (Wong

et al., 2000). With the increasing popularity of event-related

fMRI, it is not uncommon for the stimuli to be presented with a

temporal resolution TS that is finer than that of the image

acquisition. For example, an event-related experiment might

present stimuli on a 1-s grid, while acquiring images with a 2-s

TR. In some cases, the experimenter may wish to compute an

estimate at the temporal resolution of the stimuli. If TR is an

integer multiple of TS, the upsampling factor of 2 shown in the

block diagram of Fig. 2b can be increased to M = 2TR/Ts and

the low pass filter g[n] can be modified to attenuate the

additional spectral images introduced by the higher upsampling

rate (Oppenheim and Schafer, 1989). A generalized block

diagram is shown in Fig. 2c, and a matrix equivalent was

presented in Liu et al. (2002). An important special case is

shown in Fig. 2d, where the perfusion time series from Fig. 2a

is upsampled by a factor of N = M/2 and low pass filtered with

g2[n]. It is straightforward to show that the block diagram in

Fig. 2d is equivalent to the generalized block diagram in Fig. 2c

when g[n] = g̃1[n] * g2[n], where g̃1[n] is equal to g1[n]

upsampled by a factor of N. For example, if g1[n] = g2[n] = [1 1]

and N = 2, then g[n] = [1 1 1 1]. The criteria for the selection of

the optimal overall filter are discussed in detail below. The first

stage g1[n] of the filter has the greatest effect on BOLD

contamination and the shape of the noise spectrum at low

frequencies, while the second stage g2[n], which is used to

attenuate spectral images due to upsampling, has relatively little

effect on BOLD contamination, but does affect the shape of the

noise spectrum at higher frequencies.
Applications

In the following sections, we show how the signal processing

model can be used to (a) quantify BOLD contamination of the

perfusion time series, (b) quantify perfusion weighting of the

BOLD time series, (c) select an optimal filter to minimize BOLD

contamination and perfusion weighting, and (d) characterize the

noise in the perfusion time series. In most ASL fMRI experiments,

simultaneous estimates of the perfusion and BOLD signals are of

interest and can be obtained with Eqs. (3) and (5), respectively.

BOLD contamination of the perfusion signal occurs when changes

in the BOLD signal appear as changes in the perfusion estimate.

Similarly, perfusion weighting of the BOLD signal occurs when

changes in perfusion appear as changes in the BOLD signal. An

understanding of the magnitude of these errors is critical for

experiments that seek quantitative measures of perfusion and

BOLD. For example, quantitative measures are important for

furthering our understanding of the physiology and dynamics of

functional perfusion and BOLD responses (Buxton et al., 1998;

Hoge et al., 1999).

Knowledge of the temporal autocorrelation of noise in the

perfusion estimate is important for proper statistical analysis of

the experimental data (Burock and Dale, 2000). The analysis is

greatly simplified if it can be assumed that the noise is

uncorrelated. To complement the previously reported simulation

and experimental results (Aguirre et al., 2002; Wang et al.,
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2003), we use the model to obtain an analytical expression for

the autocorrelation of the perfusion noise.

BOLD contamination of perfusion time series

Images in an ASL fMRI experiment are typically acquired

with a rapid single-shot imaging sequence such as an echo-planar

imaging (EPI) or spiral readout sequence. The nonzero echo time

(TE) and acquisition time of the readout sequence lead to BOLD

weighting of the images. As we show below, this BOLD

weighting results in two components of the BOLD contamination,

one of which can be significantly reduced with the choice of an

appropriate filter. In addition, BOLD weighting can be reduced

by minimizing the echo time and, if possible, the acquisition time

of the readout sequence. For example, with the use of a dual echo

spiral sequence, perfusion estimates can be obtained from the first

echo with minimum TE and BOLD estimates can be obtained

from the second echo at a TE optimized for BOLD contrast (Liu

et al., 2002; Yongbi et al., 2001). Another approach to reducing

the effect of BOLD weighting is to reduce the static tissue

component M[n] using a background suppression technique

(Alsop et al., 2000; Mani et al., 1997; Ye et al., 2000). This

approach, however, reduces the sensitivity of the BOLD

estimates. Nonsubtractive methods using background suppression

have also been reported (Blamire and Styles, 2000; Duyn et al.,

2001), but the quantification of the perfusion estimates from these

methods is difficult.

In order to determine the degree of BOLD contamination of the

perfusion estimate, it is useful to expand the perfusion estimate in

Eq. (3) as the sum q̂[n] = qq[n] + qb[n] + qe[n], where

qq n½ � ¼ ab n½ �q n½ �e�TI=T1B
� �

4 g n½ � ð7Þ

is a BOLD-weighted, low-pass-filtered perfusion component,

qb n½ � ¼ b n½ � sMM n½ � þ sqq n½ �
� ��

� 1ð Þn þ 1
4 g n½ �

h
ð8Þ

is the sum of BOLD-weighted static tissue and perfusion

components that are modulated and low pass filtered, and

qe n½ � ¼ � 1ð Þn þ 1
e n½ �

i
4 g n½ �

h
ð9Þ

is the output noise component. For most perfusion fMRI experi-

ments, it is reasonable to approximate the in-slice magnetization as

a constant term M [n] ˜̃ M0. With this approximation, Eq. (8) may

be further simplified by recalling that the BOLD weighting may be

written as the sum b[n] = b0 + Db[n] of a constant term and a time-

varying term. The low pass filter will eliminate any constant terms

that undergo modulation, yielding

qb n½ �c � 1ð Þn þ 1
sMDb n½ �M0 þ b n½ �sqq n½ �

�
4 g n½ �

	
ð10Þ

Eqs. (7) and (10) show that there are two components of the

BOLD contamination of the perfusion time series. The first

component appears in the BOLD weighting of the qq[n] term in

Eq. (7). This BOLD weighting is inherent in the measurement

and cannot be reduced by filtering. However, it can be

minimized by the use of acquisition schemes, such as the short

echo-time single shot spiral acquisition discussed above. The

second BOLD contamination component is the modulated

BOLD-weighted static tissue term (�1)n + 1sMDb[n]M0 in Eq.

(10). This is a spurious component that can be attenuated by the
low pass filter g[n]. In addition, the modulated and BOLD-

weighted perfusion term (�1)n + 1b[n]sqq[n] in Eq. (10) forms a

second spurious component. A key goal of the low pass filter g[n]

is to minimize both these spurious components.

To gain a sense of the filter attenuation that is required, it is

useful to consider the magnitudes of the spurious components prior

to filtering. These are defined as Mb = |sMDb[n]M0| and Mqm =

|sqb[n]q[n]| for the BOLD and perfusion spurious components,

respectively. Normalizing these terms by the magnitude Mq =

|ab[n]q[n]e�TI/T1B| of the unfiltered perfusion component in Eq. (7)

yields the relative magnitudes

Mb=Mq c sMexp TI=T1Bð ÞM0TEjDR24 n½ �j= ajq n½ �jð Þ ð11Þ

Mqm=Mq ¼ sqexp TI=T1Bð Þ=a; ð12Þ

where the first order approximation Db[n]/b[n] c �DR2
*[n]TE

has been used. With typical experimental parameters of a = b =

1, TI = TIp = 1400 ms, and representative physiological

parameters T1B = 1300 ms, T1 = 1000 ms, a cerebral blood

flow (CBF) of 60 ml/(100 g min) corresponding to q[n] c
0.01M0, and a 1% BOLD change corresponding to TEjDR2

*[n]j =
0.01 (i.e., DBOLD (%) = 100jDR2

*[n]jTE), the relative magni-

tudes are Mb/Mq = 2.1 and Mqm/Mq = 1.9. Thus, with these

assumed parameters, the relative magnitudes of the spurious

components are almost the same. An upper bound on the relative

magnitude of the sum of spurious components can be obtained

from the sum of the relative magnitudes, with equality of the

sums if the spurious components have the same sign. For the

example given, the sum of relative magnitudes is 4. This means

that if the spurious components are attenuated to 1% of their

value by the low pass filter, the filtered sum of spurious

components will be roughly 4% of the desired perfusion

component.

As evident from Eq. (11), the relative magnitude of the BOLD

spurious component Mb/Mq can be reduced either by using a

shorter echo time TE or by using background suppression to

reduce M0. In addition, for a given TE, the relative magnitude

depends on spatial and temporal variations of jDR2
*[n]j. Relative

magnitudes versus percent BOLD changes ranging from 0.1% to

10% are shown in Fig. 3 using the experimental parameters

described above and assuming either no background suppression

(solid lines) or 90% background suppression (dashed lines). Also

shown are the term Mqm/Mq and the sum of the spurious

magnitudes for both background suppression conditions. The

magnitude Mqm/Mq of the perfusion spurious component does

not vary with either M0 or the percent BOLD change, and therefore

serves as a lower bound on the sum of spurious components. As a

result, when Mb/Mq becomes less than Mqm/Mq, the use of shorter

echo times and background suppression has a smaller effect on the

overall sum of spurious components. For example, the curves in

Fig. 3 show that for BOLD percent changes less than 0.6%, the use

of 90% background suppression reduces the overall unfiltered

spurious components by less than a factor of 2.

Perfusion weighting of BOLD time series

In examining the perfusion weighting of the BOLD time series,

we assume the use of a presaturation pulse since this has been

shown to reduce the degree of perfusion weighting (Wong et al.,



Fig. 3. Relative magnitudes of unfiltered spurious components in the perfusion estimate versus percent change in BOLD. Assumed experimental parameters are

described in the text.
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1997). The expression for the BOLD estimate in Eq. (5) may be

rewritten as the sum b̂[n] = bb[n] + bq[n] + be[n] where

bb n½ � ¼ b n½ � sMM n½ � þ sqq n½ �
� ��

4 g n½ �
	

ð13Þ

is the sum of BOLD-weighted static tissue and perfusion terms that

are low pass filtered,

bq n½ � ¼ � 1ð Þn þ 1ab n½ �q n½ �e� TI=T1B
�
4 g n½ �

�
ð14Þ

is the modulated and low-pass-filtered perfusion component, and

be n½ � ¼ e n½ � 4 g n½ � ð15Þ

is the output noise term. Here, bq[n] is the spurious perfusion-

weighted term that is attenuated by the low pass filter. Because the

terms bb[n] and bq[n] differ from qb[n] and qq[n] only in the

placement of the modulation term (�1)n + 1, the selection criteria

for choosing a filter to reduce the spurious term bq[n] are similar to

those used for reducing BOLD contamination of the perfusion

signal. If the BOLD and perfusion signals have the same functional

form, then the same filter minimizes both perfusion weighting and

BOLD contamination.

In addition to the perfusion weighting due to bq[n], there is

perfusion weighting of the bb[n] term that is not affected by the

filtering process. It is useful to rewrite this term as

bb n½ � ¼ sMb n½ � M n½ � þ q n½ �ð Þ þ sq � sM
� �

q n½ �=sM
�� �

4 g n½ �:
	

ð16Þ

The term M[n] + q[n] is the sum of the static magnetization and

the magnetization due to inflowing spins, and is constant if the

magnetization densities of static tissue and flowing blood are the
same. However, if blood volume increases with functional

activation and the density of blood is higher than that of static

tissue, this term will tend to increase with activation. The term

(sq� sM)q[n]/sM = (be�TIp /T1 � ae�TI /T1B)q[n]/(1 � be�TIp /T1)

reflects perfusion weighting due to the difference in the

longitudinal time constants of blood and static tissue. With

typical parameters of a = b = 1, TIp = TI = 1400 ms, T1B =

1300 ms, and T1 = 1000 ms, this term is �0.19 q[n], which is

similar to the effect calculated in Wong et al. (1997). If we

assume a resting q[n] c 0.01 M0 and a 100% increase in CBF,

this translates into a 0.19% increase in the BOLD signal without

any true BOLD change. The residual perfusion weighting term

can be reduced by decreasing TIp to compensate for the shorter

time constant of static tissue. However, the effect of the delayed

presaturation pulses on the bolus of flowing spins that have

entered the gap between the tagging region and imaging slice can

introduce errors into the quantitation of CBF. In addition, the

degree to which the perfusion weighting is reduced requires

knowledge of the time at which tagged blood water exchanges

with tissue water and begins to relax with the time constant of

tissue. Note that if presaturation is not used (b p 1), the

perfusion weighting of the BOLD signal can be much larger

and can be either positive or negative depending on b. Another
approach to the reduction of perfusion weighting is the use of a

multi-echo sequence to directly measure changes in the transverse

relaxation rate.

Selection of an optimal filter

As discussed in the previous section, the criteria for selecting

an optimal filter for minimizing either BOLD contamination or

perfusion weighting are similar. In this section, we focus on the

selection of an optimal filter for the reduction of the spurious

components in the perfusion estimate. The analysis is most easily
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presented in the frequency domain. The discrete-time Fourier

transforms of the perfusion and spurious components are

Qq fð Þ ¼ ae�TI=T1BG fð Þ B fð Þ 4 Q fð Þ½ � ð17Þ

and

Qb fð Þc�G fð Þ sMM0DB f þ 0:5ð Þ þ sqB fð Þ 4 Q f þ 0:5ð Þ
��

ð18Þ
where f denotes normalized frequency, that is, f is the frequency

divided by the sampling frequency (Oppenheim and Schafer,

1989). An optimal filter minimally attenuates the BOLD-

weighted perfusion spectrum B( f ) * Q( f ) while maximally

attenuating the modulated spurious components. To simplify the

analysis, we assume that the percent increase in perfusion is

much greater than the percent BOLD increase, which leads to the

approximations b[n]q[n] c b0q[n], B( f ) * Q( f ) c b0Q( f ),

and B( f ) * Q( f + 0.5) c b0Q( f + 0.5). This is a reasonable

assumption for voxels with functional perfusion increases, where

typical percent increases range from 50% to 100% as compared

to BOLD percent changes of 1–5% (Wong et al., 1997). With this

assumption and the expansion of the perfusion signal as the sum

q[n] = q0 + Dq[n] of a baseline perfusion term q0 and a dynamic

perfusion term Dq[n], we may rewrite Eq. (18) as

Qb fð Þc�G fð Þ sMM0DB f þ 0:5ð Þ þ sqb0DQ f þ 0:5ð Þ
�
;

�
ð19Þ

where the q0 term is eliminated by the zeros of G( f ) at f = F0.5.

With the approximation that the dynamic BOLD and perfusion

spectra are described by the same function (DB( f ) = DQ( f )), the
Fig. 4. (a) Perfusion spectrum DQ( f ) and modulated BOLD spectrum DB( f + 0

response (HDR) function. Filter responses are also shown. (b) Perfusion and mo

spectra for a randomized event-related design. (d) Ideal HDR and filtered HDR f
spurious term defined in Eq. (19) is proportional to G( f )DB( f +

0.5). The dynamic portion of the perfusion term of Eq. (17) is

proportional to G( f )DQ( f ). Comparison of the peak amplitude

of G( f )DB( f + 0.5) with that of G( f )DQ( f ) provides the

relative attenuation of the spurious components by the filter.

Combining the filter attenuation with the estimates of the relative

magnitudes of the unfiltered spurious components then yields

estimates of the magnitudes of the spurious components.

As examples of filter selection, we consider the spectra

associated with two widely used experimental designs for fMRI.

These are a block design and a randomized event-related design. The

response to the block design is obtained by convolving a stimulus

consisting of 4 cycles of 30 s on/off with a canonical hemodynamic

response (HDR) modeled as a gamma density function of the form

h(t) = (sn!)�1(t/s)nexp(�t/s) with s = 1.2, n = 3, and Dt = 1. Fig. 4a

shows the normalized spectra DQ( f ) and DB( f + 0.5) for the block

design assuming a TR of 2 s. Also shown are the spectra G( f ) for

g[n] = [1 1], g[n] = [1 2 1]/2, and g[n] = sinc[n/2]. Fig. 4b shows the

spectra after filtering with g[n] = [1 1] and g[n] = [1 2 1]/2.

Consistent with the findings of Aguirre et al. (2002), it is clear that

the sinc filter provides minimal attenuation of DQ( f ) and maximal

attenuation of DB( f + 0.5). The relative performance of the other

filters can be measured by comparing the amplitude of the perfusion

component at the normalized fundamental frequency f = 1/30 to the

amplitude of the spurious component at the modulated fundamental

frequency f = 0.5 � 1/30. This is given by the ratio jG(0.5�1/30)j/
jG(1/30)j. The relative gains of the filters at the spurious frequency
are 0.10 and 0.01 for g[n] = [1 1] and g[n] = [1 2 1]/2, respectively.

Combining these relative gains with previous estimates for the

overall relative magnitudes of spurious components assuming a 1%

BOLD change yields filtered spurious component relative magni-
.5) for a block design stimulus convolved with a canonical hemodynamic

dulated BOLD spectra after filtering. (c) Perfusion and modulated BOLD

unctions.
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tudes of 40% and 4%, respectively. The performance of the filters is

consistent with the findings of Aguirre et al. (2002) who found that

BOLD contamination with surround subtraction was much less than

obtained with pairwise subtraction and slightly higher than the

contamination observed with sinc subtraction.

In randomized event-related designs, the stimulus spectrum is

nearly white, so that DQ( f ) and DB( f ) can be approximated by

spectrum of the HDR. Fig. 4c shows the spectra DQ( f ) and DB( f +

0.5) and the filter responses. Because of the broad bandwidth of the

HDR spectra, there is a trade-off between attenuation of the spurious

component and preservation of the desired perfusion spectrum. The

sinc filter not only maximally attenuates the spurious component for

normalized frequencies above 0.25, but also significantly reduces

the bandwidth of the desired perfusion spectrum. In contrast, the

filter g[n] = [1 1] has the largest bandwidth and thus best preserves

the bandwidth of the perfusion spectrum, but provides the least

attenuation of the spurious component. To gauge the relative

performance of the various filters, it is useful to return to the

temporal domain and consider the perfusion estimate when the

perfusion signal q[n] = h[n] is equal to the sampled HDR function

h[n] = h(2n). When the tag image coincides with the first sample of

the HDR, the estimate has the form

q̂q1 n½ �c h n½ � þ � 1ð Þn þ 1
hb n½ �

�
4 g n½ �

�
ð20Þ

where hb[n] is the sampled BOLD HDR. If the perfusion signal is

delayed by one time sample, then the control image coincides with

the first HDR sample, and the estimate has the form

q̂q2 n½ �c h n� 1½ � þ � 1ð Þn þ 1
hb n� 1½ �

�
4 g n½ �:

�
ð21Þ

Because of the randomized stimulus presentation, these two

estimates occur with roughly equal frequency, so that an overall

estimate may be formed by advancing q̂2[n] by one time sample and

averaging with q̂1[n] to obtain

q̂q n½ �c q̂q1 n½ � þ q̂q2 n½ � 4 d nþ 1½ �Þ=2 ¼ h n½ � 4 g n½ �:ð ð22Þ

Thus, the randomization tends to eliminate the spurious component,

yielding an estimate that is the HDR filtered by g[n]. A similar

argument would apply to a periodic single trial experiment in which

the start times of half of the trials coincide with a tag image, with the

remaining start times coinciding with control images. Fig. 4d shows

the canonical HDR after convolution with the various filters.

Temporal broadening is minimized for the g[n] = [1 1] filter, which

has the largest bandwidth. This is consistent with previous findings

reported in Liu et al. (2002).

Perfusion noise characteristics

As stated in the Eq. (9), the perfusion noise term is qe[n] =

[(�1)n + 1e[n]] * g[n]. To derive the autocorrelation of the noise,

we first note that the autocorrelation function of (�1)n + 1e[n] is

(�1)nq[n] where q[n] is the autocorrelation function for e[n]. The

autocorrelation of the perfusion noise is then given by

qq n½ � ¼ � 1ð Þnq n½ � 4 g n½ � 4 g � n½ � ð23Þ

and the power spectrum is

ŜSq fð Þ ¼ S f þ 0:5ð ÞjG fð Þj2 ð24Þ

where S( f ) is the Fourier transform of q[n] (Oppenheim and

Schafer, 1989). To examine the effect of filtering on the perfusion
noise, we use the autocorrelation model presented in Burock and

Dale (2000) as an example of 1/f fMRI noise. In this model, the noise

is the weighted sum of a white noise process and a first order

autoregressive process and has autocorrelation q[n] = r2 (kd[n] +
(1�k)ajnj) with a = 0.88 and k = 0.75. Fig. 5a shows S( f ) and S( f +

0.5) and jG( f )j2 for the various low pass filters, and Fig. 5b shows

the filtered spectra. Note that the modulated spectrum S( f + 0.5) is

fairly flat out to a normalized frequency of 0.35. Consistent with the

experimental findings of Wang et al. (2003), sinc subtraction

provides the flattest noise spectrum for low frequencies ( f b 0.25,

corresponding to frequencies below 0.125 Hz), with the pair-wise

and surround subtraction providing progressively less flat spectra.

However, the sinc subtraction filter has a sharp cut-off at f = 0.25, so

that the output noise spectrum is not flat over the entire frequency

range. Although maximizing the flatness of the spectrum for low

frequencies may be a reasonable criteria for block designs in which

most of the energy is concentrated around a low frequency

fundamental, a more generally valid criterion is to maximize the

flatness over the entire frequency range, or equivalently minimize

the width of the autocorrelation function. The normalized autocor-

relation functions are shown in Fig. 5c. The width is minimized for

the pair-wise subtraction filter, which is also the filter that appears to

provide the flattest spectra over the entire frequency range. To gain

insight into the form of the autocorrelation functions, we note that

for the noise model in our example the modulation and filtering

process greatly attenuate the contribution of the autoregressive term,

so that the autocorrelation can be approximated as qq[n] c
r2kg[n] * g[�n]. The convolution products g[n] * g[�n] are equal

to [1 2 1], [1 4 6 4 1]/4, and sinc [n/2] for pairwise, surround, and sinc

subtraction, respectively. These products are shown in normalized

form in Fig. 5d and approximate the functions in Fig. 5c very well.
Discussion

We have shown that the various perfusion estimates based upon

subtraction processing can be represented by the general form

presented in Eq. (3), consisting of a modulation operation followed

by a low pass filtering operation. The subtraction methods differ

only in the selection of the low pass filter. The performance of the

methods can be evaluated using the signal processing model

presented in Fig. 1. The perfusion estimate is the sum of a low pass

filtered, BOLD-weighted perfusion component and low pass

filtered spurious components (containing modulated BOLD and

perfusion terms). For block design experiments, sinc subtraction

provides the greatest attenuation of the spurious components,

although the attenuation provided by surround subtraction is

probably sufficient for most experiments. For randomized event-

related experiments, the random occurrence of stimuli tends to

cancel out the spurious components, so that the filter with the

largest bandwidth, corresponding to pair-wise subtraction, should

be used to preserve the spectrum of the perfusion component. The

same conclusion holds for a periodic single trial design with

appropriate stimulus shifting such that half of the trial start times

coincide with tag images. BOLD weighting of the desired

perfusion term and the BOLD spurious component can be

minimized with shorter echo times or background suppression.

However, these methods do not attenuate the spurious perfusion

component, which is roughly the same size as the desired perfusion

term prior to filtering. Thus, even in experiments with minimal

BOLD weighting, either sinc subtraction or surround subtraction



Fig. 5. (a) Noise power spectrum S( f ), modulated noise power spectrum S( f + 0.5), and low pass filter responses. (b) Filtered noise power spectra. (c)

Normalized perfusion noise autocorrelation functions. (d) Convolution of low pass filters with their mirror images.
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should still be used for block designs, unless stimulus shifting

methods are applicable (e.g., for estimating an average block

response).

The ASL subtraction process has the advantage of whitening

the 1/f noise typically observed in fMRI experiments. Sinc

subtraction provides the flattest noise spectrum for low frequen-

cies. However, when the entire experimental frequency range is

considered, both pair-wise and surround subtraction yield

narrower autocorrelation functions.

Our analysis has not explicitly modeled the low frequency drift

terms that are often observed in fMRI scans (Friston et al., 1995) and

contribute to the apparent 1/f type noise. These terms are often

treated as additional regressors in the statistical analysis of fMRI

experiments (Liu et al., 2002). For the perfusion estimates, these

terms will be modulated and filtered in the same manner as the noise

(e.g., Eq. (9)). The selection of an optimal filter for reducing the

low frequency confounds depends on assumptions about the

bandwidth of the low frequency confounds. In most block design

experiments, however, the bandwidth of drift terms will be less

than the fundamental frequency of the stimulus, so that a filter

optimized to reduce BOLD contamination also minimizes the

confounds.

When taken together, the BOLD contamination and noise

whitening results suggest that either sinc or surround subtraction

is preferable for block design experiments, while pair-wise

subtraction is preferable for randomized event-related experiments

and periodic single trial designs with appropriate stimulus

shifting. These conclusions are consistent with the results of

previous experimental and simulation studies (Aguirre et al.,

2002; Liu et al., 2002; Wang et al., 2003).

In general, the performance of the estimate is optimized by

appropriate selection of the low pass filter, and the optimal filter may

not correspond to any of the three methods considered in this paper.
The selection of an optimal filter depends on the specifics of the

experiment and the performance criteria established by the inves-

tigator. As an example, if the experiment corresponds to the block

design described in this paper, and the design criterion is to achieve

the flattest frequency response while nulling out the spurious

component at f = 0.5� 1/30, then the filter g[n] = sinc[0.9n] would

outperform both the sinc and surround subtraction filters. Other

filters, such as windowed sinc filters, may be designed using

standard digital filter design methods (Oppenheim and Schafer,

1989).

It is important to note that all of the subtraction methods result in

a filtered estimate of the actual perfusion. In event-related experi-

ments, this can lead to significant broadening in estimates of the

perfusion HDR. In these cases, a direct matrix deconvolution may

be used to obtain an unfiltered HDR estimate (Liu et al., 2002).

In conclusion, we have presented a theoretical model of the

ASL signal processing chain and have shown how the model

provides a general framework for analyzing the performance of

various processing methods. In showing the applications of the

model we have made a number of assumptions regarding the ASL

sequence, such as the use of a presaturation pulse. The

modification of these assumptions for the analysis of other ASL

sequences is readily accomplished within the framework of the

model.
Appendix A

Here we show that estimate given in Eq. (4) is equivalent to

that in Eq. (3). The downsampling operator is defined as y[n] A 2 =

y[2n] (Oppenheim and Schafer, 1989). The tag and control time

series are then ycon[n] = y[n + 1] A 2 = y[2n + 1] and ytag[n] =

y[n] A 2 = y[2n]. Invoking linearity, the filter in Fig. 2b may
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be placed after the subtraction operation yielding q̂[n] = g[n] *
(( ycon[n]z2) * d[n � 1] � ytag[n]z2), so it is sufficient to show

that the term in parentheses is equal to (�1)n + 1y[n]. Substituting

for the tag and control terms yields (( y[2n + 1]z2) *
d[n�1]�y[2n]z2). The upsampling operator is defined as

y[n]z2 = y[n/2] for n/2 equals to an integer and zero otherwise

(Oppenheim and Schafer, 1989). Thus, the term y[2n]z2 is equal

to y[n] for n even and zero otherwise, and the term ( y[2n +

1]z2) * d[n � 1] is equal to y[n] for n odd and zero otherwise.

The difference of these two terms is equal to (�1)n + 1y[n].
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