HOMEWORK \#4

Due at the start of Class on Thursday 11/8/07

Readings:

Section 2.8 and review Chapter 6 as necessary.

Problems:

1. Let $G(k, \theta)$ be the 1-D Fourier transform of the projection $g(l, \theta)$.
a) Show that $g(l, \theta+\pi)=g(-l, \theta)$
b) Next, show that $G(k, \theta+\pi)=G(-k, \theta)$
2. Problem 2.23
3. Problem 2.24
4. Consider the CT k-space filter $G(k)=|k| w(k)$ where $w(k)$ is a windowing function. For each of the following window functions, sketch the k -space filter and derive its inverse Fourier transform.
a) The Ram-Lak Filter with $w(k)=\operatorname{rect}\left(\frac{k}{2 k_{\max }}\right)$.
b) A Hanning window defined as $w(k)=\operatorname{rect}\left(\frac{k}{2 k_{\max }}\right)\left(0.5+0.5 \cos \left(\frac{\pi k}{k_{\max }}\right)\right)$.
c) Use MATLAB to plot out and compare the inverse transforms from parts (a) and (b). Comment on the relative advantages and disadvantages of the two filters to CT reconstruction.
5. A parallel beam CT imaging system is used to image an object defined as:

$$
f(x, y)=\operatorname{rect}(x, y)+(\operatorname{rect}(x, y) * *[(\delta(x-2)+\delta(x+2)) \delta(y)] * *[(\delta(y-2)+\delta(y+2)) \delta(x)])
$$

a) Sketch the object and draw the projections of the object at 0 degrees and 45 degrees.
b) Derive the Fourier transform of the object
c) Show that the Projection-slice theorem holds for the projections at 0 and 45 degrees.
6. (20 pts) Consider the object $f(x, y)=\cos \left(2 \pi x+\frac{2}{\sqrt{3}} \pi y\right)$
a) Sketch the object.
b) Consider sampling the object in both the x and y directions with sample intervals of Δ_{x} and Δ_{y}, respectively. Indicate what sample intervals should be used to avoid aliasing.
c) Now consider imaging the object with a parallel beam CT imaging system. At what angle will the projection be non-zero?
d) We now wish to sample the non-zero projection. What sampling interval should we use to avoid aliasing?
e) Now consider the object $g(x, y)=(f(x, y))^{2}$. Answer items (c) and (d) for this object.

