

Gradients

Spins precess at the Larmor frequency, which is proportional to the local magnetic field. In a constant magnetic field $\mathrm{B}_{2}=\mathrm{B}_{0}$, all the spins precess at the same frequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to B_{z} such that $\mathrm{B}_{z}(x, y, z)=\mathrm{B}_{0}+\Delta \mathrm{B}_{z}(x, y, z)$. Thus, spins at different physical locations will precess at different frequencies.

TT Liu, BE280A, UCSD Fall 2007

Simplified Drawing of Basic Instrumentation.
Body lies on table encompassed by
coils for static field B.
gradient fields (two of three shown),
and radiofrequency field B_{1}.
tT Liu, BE280A, UCSD Fall 2007
Image, caption: copyright Nishimura, Fig. 3.15

Z Gradient Coil

L

TT Liu, BE280A, UCSD Fall 2007
Credit: Buxton 2002

Gradient Fields

$$
B_{z}(x, y, z)=B_{0}+\frac{\partial B_{z}}{\partial x} x+\frac{\partial B_{z}}{\partial y} y+\frac{\partial B_{z}}{\partial z} z
$$

$$
=B_{0}+G_{x} x+G_{y} y+G_{z} z
$$

y

$G_{z}=\frac{\partial B_{z}}{\partial z}>0$

$$
G_{y}=\frac{\partial B_{z}}{\partial y}>0
$$

TT Liu, BE280A, UCSD Fall 2007

Rotating Frame of Reference

Reference everything to the magnetic field at isocenter.

TT Liu, BE280A, UCSD Fall 2007

Phase with time-varying gradient

Gradient Fields

Define

$$
\vec{G} \equiv G_{x} \hat{i}+G_{y} \hat{j}+G_{z} \hat{k} \quad \vec{r} \equiv x \hat{i}+y \hat{j}+z \hat{k}
$$

So that

$$
G_{x} x+G_{y} y+G_{z} z=\vec{G} \cdot \vec{r}
$$

Also, let the gradient fields be a function of time. Then the z-directed magnetic field at each point in the volume is given by :

$$
B_{z}(\vec{r}, t)=B_{0}+\vec{G}(t) \cdot \vec{r}
$$

TT Liu, BE280A, UCSD Fall 2007

Static Gradient Fields

In a uniform magnetic field, the transverse magnetization is given by:

$$
M(t)=M(0) e^{-j \omega_{0} t} e^{-t / T_{2}}
$$

In the presence of non time-varying gradients we have

$$
\begin{aligned}
M(\vec{r}) & =M(\vec{r}, 0) e^{-j \gamma B_{2}(\vec{r}) t} e^{-t / T_{2}(\vec{r})} \\
& =M(\vec{r}, 0) e^{-j \gamma\left(B_{0}+\vec{G} \cdot \vec{r}\right) t} e^{-t / T_{2}(\vec{r})} \\
& =M(\vec{r}, 0) e^{-j \omega_{0} t} e^{-j \gamma \vec{G} \cdot \vec{r} t} e^{-t / T_{2}(\vec{r})}
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2007

Time-Varying Gradient Fields

In the presence of time-varying gradients the frequency as a function of space and time is:

$$
\begin{aligned}
\omega(\vec{r}, t) & =\gamma B_{z}(\vec{r}, t) \\
& =\gamma B_{0}+\gamma \vec{G}(t) \cdot \vec{r} \\
& =\omega_{0}+\Delta \omega(\vec{r}, t)
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2007

Phase

Phase $=$ angle of the magnetization phasor
Frequency $=$ rate of change of angle (e.g. radians/sec)
Phase $=$ time integral of frequency

$$
\begin{aligned}
\varphi(\vec{r}, t) & =-\int_{0}^{t} \omega(\vec{r}, \tau) d \tau \\
& =-\omega_{0} t+\Delta \varphi(\vec{r}, t)
\end{aligned}
$$

Where the incremental phase due to the gradients is

$$
\begin{aligned}
\Delta \varphi(\vec{r}, t) & =-\int_{0}^{t} \Delta \omega(\vec{r}, \tau) d \tau \\
& =-\int_{0}^{t} \gamma \vec{r}(\vec{r}, \tau) \cdot \vec{r} d \tau
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2007

Signal Equation

Signal from a volume
$s_{r}(t)=\int_{V} M(\vec{r}, t) d V$
$=\int_{x} \int_{y} \int_{z} M(x, y, z, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y d z$

For now, consider signal from a slice along z and drop the T_{2} term. Define $\quad m(x, y) \equiv \int_{z_{0}-\Delta z / 2}^{z_{z}+\Delta z / 2} M(\vec{r}, t) d z$

To obtain

$$
s_{r}(t)=\int_{x} \int_{y} m(x, y) e^{-j \omega_{0} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y
$$

TT Liu, BE280A, UCSD Fall 2007

Time-Varying Gradient Fields

The transverse magnetization is then given by

$$
\begin{aligned}
M(\vec{r}, t) & =M(\vec{r}, 0) e^{-t / T_{2}(\vec{r})} e^{\varphi(\vec{r}, t)} \\
& =M(\vec{r}, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \int_{o}^{t} \Delta \omega(\vec{r}, t) d \tau\right) \\
& =M(\vec{r}, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right)
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2007

Signal Equation

Demodulate the signal to obtain

$$
\begin{aligned}
s(t) & =e^{j \omega_{0} s_{r}}(t) \\
& =\int_{x} \int_{y} m(x, y) \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y \\
& =\int_{x} \int_{y} m(x, y) \exp \left(-j \gamma \int_{o}^{t}\left[G_{x}(\tau) x+G_{y}(\tau) y\right] d \tau\right) d x d y \\
& =\int_{x} \int_{y} m(x, y) \exp \left(-j 2 \pi\left(k_{x}(t) x+k_{y}(t) y\right)\right) d x d y
\end{aligned}
$$

Where

$$
\begin{aligned}
& k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau \\
& k_{y}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{y}(\tau) d \tau
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2007

MR signal is Fourier Transform

$$
\begin{aligned}
s(t) & =\int_{x} \int_{y} m(x, y) \exp \left(-j 2 \pi\left(k_{x}(t) x+k_{y}(t) y\right)\right) d x d y \\
& =M\left(k_{x}(t), k_{y}(t)\right) \\
& =F[m(x, y)]_{k_{x}(t), k_{y}(t)}
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2007

Recap

- Frequency = rate of change of phase.
- Higher magnetic field -> higher Larmor frequency -> phase changes more rapidly with time.
- With a constant gradient G_{x}, spins at different x locations precess at different frequencies -> spins at greater x -values change phase more rapidly.
- With a constant gradient, distribution of phases across x locations changes with time. (phase modulation)
- More rapid change of phase with $x->$ higher spatial frequency k_{x}

TT Liu, BE280A, UCSD Fall 2007

K-space

At each point in time, the received signal is the Fourier transform of the object

$$
\left.s(t)=M\left(k_{x}(t), k_{y}(t)\right)=F[m(x, y)]\right]_{k_{x}(t), k_{s}(t)}
$$

evaluated at the spatial frequencies:

$$
\begin{aligned}
& k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau \\
& k_{y}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{y}(\tau) d \tau
\end{aligned}
$$

Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k-space to form our image.

TT Liu, BE280A, UCSD Fall 2007

$$
k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau
$$

TT Liu, BE280A, UCSD Fall 2007

Units

Spatial frequencies $\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right)$ have units of $1 /$ distance.
Most commonly, $1 / \mathrm{cm}$
Gradient strengths have units of (magnetic field)/distance. Most commonly G/cm or mT/m
$\gamma /(2 \pi)$ has units of Hz / G or $\mathrm{Hz} /$ Tesla.

$$
k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau
$$

$=[\mathrm{Hz} /$ Gauss $][$ Gauss $/ \mathrm{cm}][\mathrm{sec}]$ $=[1 / \mathrm{cm}]$
TT Liu, BE280A, UCSD Fall 2007

