

TT Liu, BE280A, UCSD Fall 2007

Suetens 2002

Attenuation

Inhomogeneous Slab

$$\frac{dN}{dx} = -\mu(x)N \qquad \longrightarrow \qquad N(x) = N_0 \exp\left(-\int_0^x \mu(x')dx'\right)$$
$$I(x) = I_0 \exp\left(-\int_0^x \mu(x')dx'\right)$$

Attenuation depends on energy, so also need to integrate over energies

$$I(x) = \int_0^\infty S_0(E') E' \exp\left(-\int_0^x \mu(x';E') dx'\right) dE'$$

TT Liu, BE280A, UCSD Fall 2007

Half Value Layer		
X-ray	HVL,	HVL
energy	muscle	Bone (cm)
(keV)	(cm)	
30	1.8	0.4
50	3.0	1.2
100	3.9	2.3
150	4.5	2.8

In chest radiography, about 90% of x-rays are absorbed by body. Average energy from a tungsten source is 68 keV. However, many lower energy beams are absorbed by tissue, so average energy is higher. This is referred to as beam-hardening, and reduces the contrast.

TT Liu, BE280A, UCSD Fall 2007

Values from Webb 2003

