Bioengineering 280A
Principles of Biomedical Imaging
Fall Quarter 2008
X-Rays Lecture 1

TT Liu, BE280A, UCSD Fall 2008

X-Ray Tube

Usually tungsten is used for anode Molybdenum for mammography

Tungsten filament heated to about 2200 C leading to thermionic emission of electrons.

TT Liu, BE280A, UCSD Fall 2008
Suetens 2002

Interaction with Matter

Typical energy range for diagnostic x-rays is below 200 keV . The two most important types of interaction are photoelectric absorption and Compton scattering.

Attenuation

$n=\mu N \Delta x$ photons lost per unit length
$\mu=\frac{n / N}{\Delta x}$ fraction of photons lost per unit length

$$
\Delta N=-n \longrightarrow \frac{d N}{d x}=-\mu N \longrightarrow N(x)=N_{0} e^{-\mu x}
$$

For mono-energetic case, intensity is

$$
I(\Delta x)=I_{0} e^{-\mu \Delta x}
$$

Linear attenuation coefficient
TT Liu, BE280A, UCSD Fall 2008

Attenuation

For single-energy x-rays passing through a homogenous object:

$$
I_{o u t}=I_{i n} \exp (-\mu d)
$$

X-Ray Imaging Geometry

Beam Divergence and Flat Panel
$I_{r}=I_{0} \cos ^{3} \theta$

Example: Chest x-ray at 2 yards with 14×17 inch film.
Question: What is the smallest ratio I_{r} / I_{0} across the film?

$$
\begin{gathered}
r_{d}=\sqrt{7^{2}+8.5^{2}}=11 \\
\cos \theta=\frac{d}{\sqrt{r_{d}^{2}+d^{2}}}=0.989 \\
\frac{I_{r}}{I_{0}}=\cos ^{3} \theta=0.966 \\
\text { TT Liu, BE280A, UCSD Fall 2008 }
\end{gathered}
$$

Magnification of Object

$$
M(z)=\frac{d}{z}
$$

$=\frac{\text { Source to Image Distance (SID) }}{\text { Source to Object Distance (SOD) }}$
TT Liu, BE280A, UCSD Fall 2008

X-Ray Imaging Equation

At $\mathrm{z}=\mathrm{d}$ there is no magnification, so
$I_{d}(x, y)=I_{0} \cos ^{3} \theta \cdot \exp \left(-\int_{L_{x, y}} \mu(s) d s / \cos \theta\right)$
$=I_{0} \cos ^{3} \theta \cdot t_{d}(x, y)$
where $t_{z}(x, y)$ is the transmittivity of the object at distance z

In general, with magnification
$I_{d}(x, y)=I_{0} \cos ^{3} \theta \cdot t_{z}(x / M(z), y / M(z))$

TT Liu, BE280A, UCSD Fall 2008

Image of a point object
$I_{d}(x, y)=k s(x / m, y / m)$
$\iint k s(x / m(z), y / m(z) d x d y=$ constant
$\Rightarrow k=\frac{1}{m^{2}(z)}$
$\begin{aligned} I_{d}(x, y) & =\lim _{m \rightarrow 0} \frac{s(x / m, y / m)}{m^{2}} \\ & =\delta(x, y)\end{aligned}$
$\mathrm{s}(\mathrm{x}, \mathrm{y})$
$=\delta(x, y)$

TT Liu, BE280A, UCSD Fall 2008

$\mathrm{s}(\mathrm{x}, \mathrm{y})$

$\mathrm{s}(\mathrm{x}, \mathrm{y})$

$$
\sqrt{\mathrm{t}(\mathrm{x}, \mathrm{y})}
$$

$\mathrm{m}=1$
$I_{d}(x, y)=? ? ?$
$I_{d}(x, y)=\frac{\cos ^{3} \theta}{4 \pi d^{2} m^{2}} s(x / m, y / m) * * t(x / M, y / M)$
TT Liu, BE280A, UCSD Fall 2008

Signals and Images

Discrete-time/space signałimage: continuous valued function with a discrete time/space index, denoted as $s[n]$ for 1D, $s[m, n]$ for 2 D , etc.
 n

Continuous-time/space signałimage: continuous valued function with a continuous time/space index, denoted as $s(t)$ or $s(x)$ for 1D, $s(x, y)$ for 2D, etc.

Kronecker Delta Function

$\delta[m, n]=\left\{\begin{array}{cc}1 & \text { for } m=0, n=0 \\ 0 & \text { otherwise }\end{array}\right.$

TT Liu, BE280A, UCSD Fall 2008

Dirac Delta Function

Notation:
$\delta(x)$ - 1D Dirac Delta Function
$\delta(x, y)$ or ${ }^{2} \delta(x, y)$ - 2D Dirac Delta Function
$\delta(x, y, z)$ or ${ }^{3} \delta(x, y, z)$ - 3D Dirac Delta Function
$\delta(\vec{r})$ - N Dimensional Dirac Delta Function

TT Liu, BE280A, UCSD Fall 2008

1D Dirac Delta Function

$\delta(x)=0$ when $x \neq 0$ and $\int_{-\infty}^{\infty} \delta(x) d x=1$
Can interpret the integral as a limit of the integral of an ordinary function that is shrinking in width and growing in height, while maintaining a constant area. For example, we can use a shrinking rectangle function such that $\int_{-\infty}^{\infty} \delta(x) d x=\lim _{\tau \rightarrow 0} \int_{-\infty}^{\infty} \tau^{-1} \Pi(x / \tau) d x$.

2D Dirac Delta Function

$\delta(x, y)=0$ when $x^{2}+y^{2} \neq 0$ and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x, y) d x d y=1$
where we can consider the limit of the integral of an ordinary 2D function that is shrinking in width but increasing in height while maintaining constant area.
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x, y) d x d y=\lim _{\tau \rightarrow 0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tau^{-2} \Pi(x / \tau, y / \tau) d x d y$.
Useful fact : $\delta(x, y)=\delta(x) \delta(y)$

TT Liu, BE280A, UCSD Fall 2008

Generalized Functions

Dirac delta functions are not ordinary functions that are defined by their value at each point. Instead, they are generalized functions that are defined by what they do underneath an integral.

The most important property of the Dirac delta is the sifting property $\int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) g(x) d x=g\left(x_{0}\right)$ where $g(x)$ is a smooth function. This sifting property can be understood by considering the limiting case $\lim _{\tau \rightarrow 0} \int_{-\infty}^{\infty} \tau^{-1} \Pi(x / \tau) g(x) d x=g\left(x_{0}\right)$

Representation of 1D Function

From the sifting property, we can write a 1D function as
$g(x)=\int_{-\infty}^{\infty} g(\xi) \delta(x-\xi) d \xi$. To gain intuition, consider the approximation
$g(x) \approx \sum_{n=-\infty}^{\infty} g(n \Delta x) \frac{1}{\Delta x} \Pi\left(\frac{x-n \Delta x}{\Delta x}\right) \Delta x$.

TT Liu, BE280A, UCSD Fall 2008

Impulse Response

Intuition: the impulse response is the response of a system to an input of infinitesimal width and unit area.

Blurred Image

Since any input can be thought of as the weighted sum of impulses, a linear system is characterized by its impulse response(s).

TT Liu, BE280A, UCSD Fall 2008

Impulse Response

The impulse response characterizes the response of a system over all space to a Dirac delta impulse function at a certain location.

$$
\begin{array}{cc}
h\left(x_{2} ; \xi\right)=L\left[\delta\left(x_{1}-\xi\right)\right] & \text { 1D Impulse Response } \\
h\left(x_{2}, y_{2} ; \xi, \eta\right)=L\left[\delta\left(x_{1}-\xi, y_{1}-\eta\right)\right] & \text { 2D Impulse Response } \\
\text { Impulse at } \xi, \eta
\end{array}
$$

Pinhole Magnification Example

In this example, an impulse at (ξ, η) will yield an impulse at $(m \xi, m \eta)$ where $m=-b / a$.
Thus, $h\left(x_{2}, y_{2} ; \xi, \eta\right)=L\left[\delta\left(x_{1}-\xi, y_{1}-\eta\right)\right]=\delta\left(x_{2}-m \xi, y_{2}-m \eta\right)$.
TT Liu, BE280A, UCSD Fall 2008

