HOMEWORK \#4

Due at the start of Class on Thursday 10/30/08

Readings:

Section 2.8 and review Chapter 6 as necessary.

Problems:

1. Generalized functions. Recall that delta functions are not ordinary functions, and are defined by what they "do". In class, we showed how to integrate a delta function with a "test" function in order to see what it does. Using this approach, show that $\delta(x)=\int_{-\infty}^{\infty} e^{j 2 \pi k_{x} x} d k_{x}$. HINT: Multiply the expression by a test function $g(x)$ and integrate over x; then consider that the resulting expression is in the form of an inverse Fourier transform evaluated at a specific x location. This will allow you to show that $\int_{-\infty}^{\infty} e^{j 2 \pi k_{x} x} d k_{x}$ "acts" like $\delta(x)$.
2. Let $G(k, \theta)$ be the 1-D Fourier transform of the projection $g(l, \theta)$.
a) Show that $g(l, \theta+\pi)=g(-l, \theta)$
b) Next, show that $G(k, \theta+\pi)=G(-k, \theta)$
3. Problem 2.24
4. Consider the CT k-space filter $G(k)=|k| w(k)$ where $w(k)$ is a windowing function. For each of the following window functions, use MATLAB to plot the k -space filter and then derive its inverse Fourier transform.
a) The Ram-Lak Filter with $w(k)=\operatorname{rect}\left(\frac{k}{2 k_{\max }}\right)$.
b) A Hanning window defined as $w(k)=\operatorname{rect}\left(\frac{k}{2 k_{\max }}\right)\left(0.5+0.5 \cos \left(\frac{\pi k}{k_{\max }}\right)\right)$.
c) Use MATLAB to plot out and compare the inverse transforms from parts (a) and (b). Comment on the relative advantages and disadvantages of the two filters for CT reconstruction.
5. A parallel beam CT imaging system is used to image an object defined as:
$f(x, y)=\operatorname{rect}(x, y)+(\operatorname{rect}(x, y) * *[(\delta(x-3)+\delta(x+3)) \delta(y)] * *[(\delta(y-4)+\delta(y+4)) \delta(x)])$
a) Sketch the object and draw the projections of the object at 0 degrees and 45 degrees.
b) Derive the Fourier transform of the object
c) Show that the Projection-slice theorem holds for the projections at 0 and 45 degrees.
6. (20 pts) Consider the object $f(x, y)=\cos \left(\frac{2}{\sqrt{3}} \pi x+2 \pi y\right)$
a) Sketch the object.
b) Consider sampling the object in both the x and y directions with sample intervals of Δ_{x} and Δ_{y}, respectively. Indicate what sample intervals should be used to avoid aliasing.
c) Now consider imaging the object with a parallel beam CT imaging system. At what angle will the projection be non-zero?
d) We now wish to sample the non-zero projection. What sampling interval should we use to avoid aliasing?
e) Now consider the object $g(x, y)=(f(x, y))^{2}$. Answer items (c) and (d) for this object.
