Computing Transforms

\[F(\delta(x)) = \int_{-\infty}^{\infty} \delta(x)e^{-j2\pi k x} \, dx = 1 \]

\[F(\delta(x-x_0)) = \int_{-\infty}^{\infty} \delta(x-x_0)e^{-j2\pi k x} \, dx = e^{-j2\pi k x_0} \]

\[F(1) = \int_{-\infty}^{\infty} e^{-j2\pi k x} \, dx = \frac{\sin(\pi x)}{\pi x} = \text{sinc}(x) \]

Similarly,

\[F\{e^{j2\pi k x}\} = \delta(k - k_0) \]

\[F\{\cos2\pi k x\} = \frac{1}{2} (\delta(k - k_0) + \delta(k + k_0)) \]

\[F\{\sin2\pi k x\} = \frac{1}{2j} (\delta(k - k_0) - \delta(k + k_0)) \]
Examples

\[g(x, y) = 1 + e^{j2\pi xy} \]
\[G(k_x, k_y) = \delta(k_x) + \delta(k_x + a) \delta(k_y) \]

\[g(x, y) = 1 + e^{j2\pi y} \]
\[G(k_x, k_y) = \delta(k_x) + \delta(k_x + a) \delta(k_y - a) \]

\[g(x, y) = \cos(2\pi(ax + by)) \]
\[G(k_x, k_y) = \frac{1}{2} \delta(k_x - a) \delta(k_y - b) + \frac{1}{2} \delta(k_x + a) \delta(k_y + b) \]

Basic Properties

Linearity
\[F[ag(x, y) + bh(x, y)] = aG(k_x, k_y) + bH(k_x, k_y) \]

Scaling
\[F[g(ax, by)] = \frac{1}{ab} \begin{pmatrix} k_x \\ k_y \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \]

Shift
\[F[g(x - a, y - b)] = G(k_x, k_y) e^{-j2\pi(k_x a + k_y b)} \]

Modulation
\[F[g(x, y) e^{j2\pi(ax + by)}] = G(k_x - a, k_y - b) \]
Linearity

The Fourier Transform is linear.

\[
F\{ag(x) + bh(x)\} = aG(k_x) + bH(k_y)
\]

\[
F\{ag(x, y) + bh(x, y)\} = aG(k_x, k_y) + bH(k_x, k_y)
\]

Scaling Theorem

\[
F\{g(ax)\} = \frac{1}{|a|}G\left(\frac{k_x}{a}\right)
\]

\[
F\{g(ax, by)\} = \frac{1}{|ab|}G\left(\frac{k_x}{a}, \frac{k_y}{b}\right)
\]

Separable Functions

\(g(x, y)\) is said to be a separable function if it can be
written as \(g(x, y) = g_x(x)g_y(y)\)

The Fourier Transform is then separable as well.

\[
G(k_x, k_y) = \iint g(x, y)e^{-j2\pi(k_xx+k_xy)}
\]

\[
= \int g_x(x)e^{-j2\pi k_xx}dx \int g_y(y)e^{-j2\pi k_yy}dy
\]

\[
= G_x(k_x)G_y(k_y)
\]

Example (sinc/rect)

Example
\(g(x, y) = \Pi(x)\Pi(y)\)
\(G(k_x, k_y) = \text{sinc}(k_x)\text{sinc}(k_y)\)

\[
= \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}
\]
Example (sinc/rect)

\[g(x, y) = \delta(x, y) = \delta(x)\delta(y) \]
\[G(k_x, k_y) = 1 \]

Examples

\[g(x, y) = \delta(x) \]
\[G(k_x, k_y) = \delta(k_y) \]

Duality

Note the similarity between these two transforms

\[F\{e^{j2\pi ak}\} = \delta(k_y - a) \]
\[F\{\delta(x - a)\} = e^{-jk_0x} \]

These are specific cases of duality

\[F\{G(x)\} = g(-k_y) \]

Application of Duality

\[F\{\text{sinc}(x)\} = \int_{-\infty}^{\infty} \frac{\sin \pi k_x}{\pi k_x} e^{-j2\pi k_x a} \ dx = ?? \]

Recall that \(F\{\Pi(x)\} = \text{sinc}(k_x) \).
Therefore from duality, \(F\{\text{sinc}(x)\} = \Pi(-k_x) = \Pi(k_x) \)
Shift Theorem

\[F\{g(x-a)\} = G(k_x)e^{-j2\pi ak_x} \]

\[F\{g(x-a,y-b)\} = G(k_x,k_y)e^{-j2\pi(k_xa+k_yb)} \]

Shifting the function doesn’t change its spectral content, so the magnitude of the transform is unchanged. Each frequency component is shifted by \(a\). This corresponds to a relative phase shift of

\[-2\pi a/(\text{spatial period}) = -2\pi ak_x\]

For example, consider \(e^{j2\pi k_x x}\). Shifting this by \(a\) yields

\(e^{j2\pi k_x (x-a)} = e^{j2\pi k_x x}e^{-j2\pi ak_x}\)

Modulation Example

Amplitude Modulation (e.g. AM Radio)

\[g(t) \rightarrow 2g(t) \cos(2\pi f_0 t) \]

\[2 \cos(2\pi f_0 t) \]

\[G(f) \]

\[G(f-f_0) + G(f+f_0) \]

Modulation

\[F\{g(x)e^{j2\pi k_0 x}\} = G(k_x) * \delta(k_x - k_0) = G(k_x - k_0) \]

\[F\{g(x)\cos(2\pi k_0 x)\} = \frac{1}{2} G(k_x - k_0) + \frac{1}{2} G(k_x + k_0) \]

\[F\{g(x)\sin(2\pi k_0 x)\} = \frac{1}{2j} G(k_x - k_0) - \frac{1}{2j} G(k_x + k_0) \]
The fundamental nature of the convolution theorem may be better understood by observing that the complex exponentials are eigenfunctions of the convolution operator.

\[e^{j2\pi k x} \]

The response of a linear shift invariant system to a complex exponential is simply the exponential multiplied by the FT of the system’s impulse response.

\[z(x) = g(x) \ast e^{j2\pi k x} = \int_{-\infty}^{\infty} g(u) e^{j2\pi k (x-u)} du \]

\[= G(k_x) e^{j2\pi k x} \]
MTF = Fourier Transform of PSF

Convolution/Multiplication

Now consider an arbitrary input \(h(x) \).

Recall that we can express \(h(x) \) as the integral of weighted complex exponentials.

Each of these exponentials is weighted by \(G(k_x) \) so that the response may be written as

\[
 z(x) = \int_{-\infty}^{\infty} G(k_x) H(k_x) e^{j 2\pi k_x x} dk_x
\]

Convolution/Modulation

Theorem

\[
 F \{ g(x) \ast h(x) \} = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} g(u) \ast h(x-u) du \right] e^{-j 2\pi k_x x} dx
\]

= \int_{-\infty}^{\infty} g(u) \int_{-\infty}^{\infty} h(x-u) e^{-j 2\pi k_x x} dx du

= \int_{-\infty}^{\infty} g(u) H(k_x) e^{-j 2\pi k_x u} du

= G(k_x) H(k_x)

Convolution in the spatial domain transforms into multiplication in the frequency domain. Dual is modulation

\[
 F \{ g(x) h(x) \} = G(k_x) \ast H(k_x)
\]

2D Convolution/Multiplication

Convolution

\[
 F \{ g(x,y) \ast h(x,y) \} = G(k_x,k_y) H(k_x,k_y)
\]

Multiplication

\[
 F \{ g(x,y) h(x,y) \} = G(k_x,k_y) \ast H(k_x,k_y)
\]
Application of Convolution Thm.

\[\Lambda(x) = \begin{cases} |1 - |x| & |x| < 1 \\ 0 & \text{otherwise} \end{cases} \]

\[F(\Lambda(x)) = \int_{-1}^{1} (1 - |x|) e^{-j\pi k x} dx = ?? \]

Application of Convolution Thm.

\[\Lambda(x) = \Pi(x) * \Pi(x) \]

\[F(\Lambda(x)) = \text{sinc}^2(k_x) \]

Convolution Example

Response of an Imaging System

\[g(x,y) \quad h_1(x,y) \quad h_2(x,y) \quad h_3(x,y) \]

\[Z(k_x, k_y) \]

\[z(x,y) = g(x,y) * h_1(x,y) * h_2(x,y) * h_3(x,y) \]

\[Z(k_x, k_y) = G(k_x, k_y) H_1(k_x, k_y) H_2(k_x, k_y) H_3(k_x, k_y) \]
System MTF = Product of MTFs of Components

Useful Approximation

$$FWHM_{\text{system}} = \sqrt{FWHM_1^2 + FWHM_2^2 + \cdots + FWHM_N^2}$$

Example

$$FWHM_1 = 1\text{mm}$$
$$FWHM_2 = 2\text{mm}$$
$$FWHM_{\text{system}} = \sqrt{5} = 2.24\text{mm}$$