Motion Related Contrast in MRI

Eric Wong

PollEv.com/be278
Motion Encoding

Modify M_z
- Time of Flight MRA
- Arterial Spin Labeling
- Myocardial Tagging

Modify M_{xy}
- Phase Contrast MRA
- Elastography
- Diffusion Imaging

Excitation
$M_z \rightarrow M_{xy}$

Data Acquisition
Encoding M_{XY} for Motion: Phase Contrast

Phase from Motion:

$\phi(t) = \int \gamma B(t) dt$

$= \int \gamma \tilde{G}(t) \cdot \tilde{r}(t) dt$

$= \int \gamma \tilde{G}(t)(\tilde{r}_0 + \tilde{V}t + ...) dt$

$= \tilde{r}_0 \cdot \int \gamma \tilde{G}(t) dt + \tilde{V} \cdot \int \gamma \tilde{G}(t) t dt + ...$

Zeroth Moment (m_0)

k

First (flow) Moment (m_1)

$= (\sqrt{2} + 1):1$

Bipolar Gradient:

G

δ

Δ

$m_1 = \gamma G \delta \Delta$

How Big can m_1 be?

For: $G=4G/cm$

$\delta=\Delta=50\text{ms}$

- π per $6\mu m$
- $\text{VENC=velocity for } \phi=\pi$
- $=6\mu m/50\text{ms}=0.12\text{mm/s}$
Phase Contrast MRA

- One image with velocity encoding positive
- One image with velocity encoding negative
- Vector sum of gradients determines direction of encoding
- Display phase difference between images
- Phase difference subtracts out off-resonance and other phase effects
Phase Contrast MRA

• Phase is proportional to velocity
• Quantitate velocity from phase images and/or:
• Construct angiograms by MIP of velocity maps

MR Elastography

Taouli et al, AJR 2009; 193:14–27

PollEv.com/be278
Diffusion Imaging

Diffusion
- Random walk
- No net displacement -> No net phase shift
- RMS displacement in time $dt \propto \sqrt{Ddt}$
- Convolution with Gaussian in image space
- Multiplication by Gaussian in K-space

In 100ms:
- Diffusion @ 10^{-3}mm2/s
 - $\sim 15\mu$m
- Flow @ 1mm/s $\sim 100\mu$m

Image Space $\xrightarrow{FT} K$-space

$$\mathcal{F}\left[e^{-\frac{x^2}{2D}}\right] = e^{-\frac{k^2D}{2}}$$

Total Attenuation:
$$\frac{S}{S_0} = e^{-D\int k^2 dt} = e^{-bD}$$

where:
$$b \equiv \int k^2 dt$$

Pulse Sequence
- RF
- G
- EPI
Time of Flight MRA

- Spoiled gradient echo with high flip angle and short TR
- Static magnetization becomes highly saturated
- Relaxed inflowing blood has much higher signal

\[
M_z(tr) = M_0 \left(1 - (1 - M_z(tr - 1)\cos(\alpha))e^{-TR/T_1}\right)
\]

\[
Signal(tr) = M_z(tr)\sin(\alpha)
\]

TR=20ms
\[T_1=1600\text{ms}\]

\[\alpha=40^\circ\]

\[\alpha=5^\circ\]
Arterial Spin Labeling

RF
- Using RF pulses, modify (label) the longitudinal magnetization of arterial blood water, typically by inversion.
- Decay constant is T_1 (~1.5s)

- Wait for labeled blood to flow to target tissue
- Measure labeled magnetization in target tissue
- Delivery time is ~1s
Properties of ASL

Advantages:
• Short lived H_2O tracer
 • Fast exchange into tissues
 • Kinetics related only to delivery – No outflow
 • Inherently proportional to perfusion
• Non-Invasive
 • Repeatable indefinitely

Disadvantages:
• Short lived H_2O tracer
 • Strong tradeoff between delivery and T_1 decay
• Low SNR
 • Perfusion is $\sim 0.01\text{s}^{-1}$
The ASL Measurement

Tag by Magnetic Inversion

Control

Acquire image of tissue + relaxed blood

Acquire image of tissue + tagged blood

ASL Signal = Control - Tag \propto Perfusion
Classes of ASL Labeling Methods

Continuous ASL

Pulsed ASL

Velocity Selective ASL
CASL: Flow Driven Adiabatic Inversion

Effective field in frame that rotates at ω_L:

$$\vec{B}_e = B_1 \hat{i} + z(t)G_z \hat{k}$$
PASL: Pulsed Adiabatic Inversion

Effective field in frame that rotates with pulse:

\[
\vec{B}_e = B_1 \hat{i} + \frac{\Delta \omega}{\gamma} \hat{k}
\]
Calculation of CBF

\[\Delta M_Z = (CBF) 2M_{0B} \int_{PLD}^{PLD+LT} e^{-t/T_1} dt \]
Clinical ASL

Ischemic Penumbra: Perfusion > Diffusion Mismatch

LICA Occlusion: Tissue at Risk

Glioblastoma Multiforme

Hyperperfusion post anoxia

Wake Forest: Deibler et al, AJNR August 2008
Cardiac MRI - Goals

<table>
<thead>
<tr>
<th>Metric</th>
<th>MRI</th>
<th>Competing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function - Ejection Fraction</td>
<td>Cine</td>
<td>Echocardiography</td>
</tr>
<tr>
<td>Function – Contractility</td>
<td>Myocardial Tagging</td>
<td></td>
</tr>
<tr>
<td>Function - Valves</td>
<td>Cine</td>
<td>Echocardiography</td>
</tr>
<tr>
<td>Coronary Arteries</td>
<td>Gated TOF</td>
<td>Cardiac Catheterization</td>
</tr>
<tr>
<td>Perfusion</td>
<td>Gd Bolus, ASL</td>
<td>SPECT, PET, CT</td>
</tr>
</tbody>
</table>

Main Challenge: **MOTION**
- Beating
- Respiration
- Patient
Gating

Prospective

Retrospective

http://youtu.be/BhMFhbcp2Jg
Coronary Arteries
Gating/Navigation

• Cardiac Gating
• Respiratory Gating
• Breath hold
• Navigation
• Data filtering

Gated, no nav + diaphragm nav + fat nav
Myocardial Tagging

http://www.med-ed.virginia.edu/courses/rad/cardiacmr/Techniques/Tagging.html
Arterial Spin Labeling

1. Tag Arterial Blood by magnetic inversion
2. Wait for delivery of tagged blood (1-2s)
3. Image myocardium + tagged blood

Tag Image

ASL Image of tagged blood

Control Image

Image myocardium
ASL Tagging Schemes

- Pulsed Slab Tag Along Aorta
- Pulsed Slab Tag Across Aorta
- Pseudo-continuous Tag Plane
- Imaging Volume
- Pulsed 2D Tag Along Aorta
- Pulsed 2D Tag Across Aorta
2D Pulsed Tagging
Magnetization Transfer

Spin Exchange or Chemical Exchange

MT Ratio

Image Credit: http://commons.wikimedia.org/wiki/File:Conformational_states_of_PPDK.png
Magnetization Transfer: Applications

Static tissue suppression for MRA

Lesion detection in MS

CEST:
Chemical Exchange Saturation Transfer
doi:10.1038/nm.2615
Summary

ASL: 10cm, T_1

MRA: TOF 1cm, T_1; PC 1mm, T_2

Tagging: 1cm, T_1

MT: 1ηm, T_1

Diffusion: 10μm, T_2