Spin

- Intrinsic angular momentum of elementary particles -- electrons, protons, neutrons.
- Spin is quantized. Key concept in Quantum Mechanics.

Magnetic Moment and Angular Momentum

A charged sphere spinning about its axis has angular momentum and a magnetic moment. This is a classical analogy that is useful for understanding quantum spin, but remember that it is only an analogy!

Relation: \(\mu = \gamma S \) where \(\gamma \) is the gyromagnetic ratio and \(S \) is the spin angular momentum.

Nuclear Spin Rules

<table>
<thead>
<tr>
<th>Number of Protons</th>
<th>Number of Neutrons</th>
<th>Spin</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Even</td>
<td>Even</td>
<td>0</td>
<td>12C, 16O</td>
</tr>
<tr>
<td>Even</td>
<td>Odd</td>
<td>(j/2)</td>
<td>17O</td>
</tr>
<tr>
<td>Odd</td>
<td>Even</td>
<td>(j/2)</td>
<td>1H, 23Na, 31P</td>
</tr>
<tr>
<td>Odd</td>
<td>Odd</td>
<td>(j)</td>
<td>2H</td>
</tr>
</tbody>
</table>
Classical Magnetic Moment

\[\vec{\mu} = IA\hat{n} \]

Energy in a Magnetic Field

\[E = -\vec{\mu} \cdot \vec{B} = -\mu_z B \]

Lorentz Force

Maximum Energy State

Minimum Energy State

Magnetic Field Units

1 Tesla = 10,000 Gauss

Earth’s field is about 0.5 Gauss

0.5 Gauss = 0.5 \times 10^{-4} \, T = 50 \, \mu T

Earth's Magnetic Field

www.qi-whiz.com/images/Earth-magnetic-field.jpg
Boltzmann Distribution

\[\frac{N_j}{N} = \mathcal{P}(\epsilon_j) = \frac{e^{-\epsilon_j/(kT)}}{Q} \]

Boltzmann Distribution

Equilibrium Magnetization

\[M_0 = N \langle \mu \rangle \]
\[= N\mu B / (kT) \]
\[= N\gamma^2 h^2 B / (4kT) \]

M = number of nuclear spins per unit volume
Magnetization is proportional to applied field.

Hansen 2009
MRI System

Nova 32 channel

Siemens 32 channel

MRI Gradients

Torque

For a non-spinning magnetic moment, the torque will try to align the moment with magnetic field (e.g. compass needle)

\[
N = \mu \times B
\]
Precession

Torque

\[\mathbf{N} = \mu \times \mathbf{B} \]

Change in Angular momentum

\[\frac{d\mathbf{S}}{dt} = \mathbf{N} \]

Relation between magnetic moment and angular momentum

\[\frac{d\mu}{dt} = \gamma \mathbf{S} \times \mathbf{B} \]

Analogous to motion of a gyroscope

Precesses at an angular frequency of

\[\omega = \gamma B \]

This is known as the Larmor frequency.

Magnetization Vector

Vector sum of the magnetic moments over a volume.

For a sample at equilibrium in a magnetic field, the transverse components of the moments cancel out, so that there is only a longitudinal component.

Equation of motion is the same form as for individual moments.

\[\mathbf{M} = \frac{1}{V} \sum_{\text{protons}} \mu_i \]

\[\frac{d\mathbf{M}}{dt} = \gamma \mathbf{M} \times \mathbf{B} \]

Hansen 2009

RF Excitation

http://www.drcmr.dk/main/content/view/213/74/
Free precession about static field

\[\frac{dM}{dt} = M \times \gamma B \]

- Here, \(M \) represents the magnetic moment,
- \(\gamma \) is the gyromagnetic ratio,
- \(B \) is the magnetic field.

\[dM_x = \gamma M_x B_z dt \]
\[dM_y = -\gamma B_z M_y dt \]
\[dM_z = -\gamma B_y M_z dt \]

Precession

\[
\begin{bmatrix}
\frac{dM_x}{dt} \\
\frac{dM_y}{dt} \\
\frac{dM_z}{dt}
\end{bmatrix} = \gamma
\begin{bmatrix}
0 & B_0 & 0 \\
-B_0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
M_x \\
M_y \\
M_z
\end{bmatrix}
\]

Useful to define

\[M = M_x + jM_y \]

\[\frac{dM}{dt} = \frac{d}{dt}(M_x + iM_y) \]

\[= -j\gamma B_0 M \]

Solution is a time-varying phasor

\[M(t) = M(0)e^{-j\omega_0 t} = M(0)e^{-j\omega_0 t} \]

Gyromagnetic Ratios

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Spin</th>
<th>Magnetic Moment</th>
<th>(\gamma(2\pi)) (MHz/Tesla)</th>
<th>Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1\text{H})</td>
<td>1/2</td>
<td>2.793</td>
<td>42.58</td>
<td>88 M</td>
</tr>
<tr>
<td>(^{23}\text{Na})</td>
<td>3/2</td>
<td>2.216</td>
<td>11.27</td>
<td>80 mM</td>
</tr>
<tr>
<td>(^{31}\text{P})</td>
<td>1/2</td>
<td>1.131</td>
<td>17.25</td>
<td>75 mM</td>
</tr>
</tbody>
</table>

Source: Haacke et al., p. 27

Question: which way does this rotate with time?
Larmor Frequency

\[\omega = \gamma B \quad \text{Angular frequency in rad/sec} \]

\[f = \frac{\gamma B}{2\pi} \quad \text{Frequency in cycles/sec or Hertz, Abbreviated Hz} \]

For a 1.5 T system, the Larmor frequency is 63.86 MHz which is 63.86 million cycles per second. For comparison, KPBS-FM transmits at 89.5 MHz.

Note that the earth’s magnetic field is about 50 \(\mu T \), so that a 1.5T system is about 30,000 times stronger.

Notation and Units

1 Tesla = 10,000 Gauss

Earth's field is about 0.5 Gauss

0.5 Gauss = 0.5x10\(^{-4}\) T = 50 \(\mu T \)

\[\gamma = 26752 \text{ radians/second/Gauss} \]

\[\gamma = \frac{\gamma}{2\pi} = 4258 \text{ Hz/Gauss} \]

= 42.58 MHz/Tesla

Gradients

Spins precess at the Larmor frequency, which is proportional to the local magnetic field. In a constant magnetic field \(B_z = B_0 \), all the spins precess at the same frequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to \(B_z \) such that \(B_z(x,y,z) = B_0 + \Delta B_z(x,y,z) \). Thus, spins at different physical locations will precess at different frequencies.

MRI System

Simplified Drawing of Basic Instrumentation.

Body lies on table encompassed by coils for static field \(B_0 \), gradient fields (two of three shown), and radiofrequency field \(B_1 \).

Image, caption: copyright Nishimura, Fig. 3.15
Interpretation

\[\Delta B_z(x) = G_x x \]

- Spins Precess at \(\gamma B_0 - \gamma G_x x \) (slower)
- Spins Precess at \(\gamma B_0 + \gamma G_x x \) (faster)

Gradient Fields

\[B_z(x, y, z) = B_0 + \frac{\partial B_z}{\partial x} x + \frac{\partial B_z}{\partial y} y + \frac{\partial B_z}{\partial z} z \]

\[= B_0 + G_x x + G_y y + G_z z \]

\[G_z = \frac{\partial B_z}{\partial z} > 0 \]

\[G_y = \frac{\partial B_z}{\partial y} > 0 \]

Rotating Frame of Reference

Reference everything to the magnetic field at isocenter.

Spins

There is nothing that nuclear spins will not do for you, as long as you treat them as human beings.

Erwin Hahn
Phasors

\[\theta = 0 \]
\[\theta = -\pi/2 \]
\[\theta = \pi \]
\[\theta = \pi/2 \]

Interpretation

\[\Delta B(x) = G(x) \]

Faster

Slower
Fig 3.12 from Nishimura

\[k_x = 0; \quad k_y = 0 \]

\[k_x = 0; \quad k_y \neq 0 \]

Hanson 2009

k-space

Image space

k-space

Fourier Transform
2D Fourier Transform

Fourier Transform

\[G(k_x, k_y) = \mathcal{F}\{g(x, y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) e^{-j2\pi(k_x x + k_y y)} \, dx \, dy \]

Inverse Fourier Transform

\[g(x, y) = \mathcal{F}^{-1}\{G(k_x, k_y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(k_x, k_y) e^{j2\pi(k_x x + k_y y)} \, dk_x \, dk_y \]