Signals and Images

Discrete-time/space signal/image: continuous valued function with a discrete time/space index, denoted as $s[n]$ for 1D, $s[m,n]$ for 2D, etc.

Continuous-time/space signal/image: continuous valued function with a continuous time/space index, denoted as $s(t)$ or $s(x)$ for 1D, $s(x,y)$ for 2D, etc.

Kronecker Delta Function

$$\delta[n] = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{otherwise} \end{cases}$$
Kronecker Delta Function

\[\delta[m,n] = \begin{cases} 1 & \text{for } m = 0, n = 0 \\ 0 & \text{otherwise} \end{cases} \]

Discrete Signal Expansion

\[g[n] = \sum_{k=-\infty}^{\infty} g[k] \delta[n-k] \]

\[g[m,n] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} g[k,l] \delta[m-k,n-l] \]

2D Signal

\[
\begin{array}{cc}
0 & a \\
0 & 0 \\
0 & 0 \\
c & 0 \\
\end{array}
+ \begin{array}{cc}
a & 0 \\
0 & b \\
0 & 0 \\
0 & 0 \\
\end{array}
+ \begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & d \\
\end{array}
\]

Image Decomposition

\[g[m,n] = a \delta[m,n] + b \delta[m,n-1] + c \delta[m-1,n] + d \delta[m-1,n-1] \]

\[= \sum_{k=0}^{1} \sum_{l=0}^{1} g[k,l] \delta[m-k,n-l] \]
Dirac Delta Function

Notation:
- \(\delta(x) \) - 1D Dirac Delta Function
- \(\delta(x,y) \) or \(\delta(x,y) \) - 2D Dirac Delta Function
- \(\delta(x,y,z) \) or \(\delta(x,y,z) \) - 3D Dirac Delta Function
- \(\delta(r) \) - N Dimensional Dirac Delta Function

1D Dirac Delta Function

\[\delta(x) = 0 \text{ when } x \neq 0 \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(x) \, dx = 1 \]

Can interpret the integral as a limit of the integral of an ordinary function that is shrinking in width and growing in height, while maintaining a constant area. For example, we can use a shrinking rectangle function such that

\[\int_{-\frac{1}{2}}^{\frac{1}{2}} \lim_{\tau \to 0} \tau^{-1} \Pi \left(\frac{x}{\tau} \right) \, dx = g(x) \]

Useful fact: \(\delta(x,y) = \delta(x) \delta(y) \)

2D Dirac Delta Function

\[\delta(x,y) = 0 \text{ when } x^2 + y^2 \neq 0 \quad \text{and} \quad \iint \delta(x,y) \, dxdy = 1 \]

where we can consider the limit of the integral of an ordinary 2D function that is shrinking in width but increasing in height while maintaining constant area.

\[\iint \delta(x,y) \, dxdy = \lim_{\tau \to 0} \iint \tau^{-2} \Pi \left(\frac{x}{\tau}, \frac{y}{\tau} \right) \, dxdy. \]

Useful fact: \(\delta(x,y) = \delta(x) \delta(y) \)

Generalized Functions

Dirac delta functions are not ordinary functions that are defined by their value at each point. Instead, they are generalized functions that are defined by what they do underneath an integral.

The most important property of the Dirac delta is the sifting property

\[\int_{-\infty}^{\infty} \delta(x-x_0) g(x) \, dx = g(x_0) \]

where g(x) is a smooth function. This sifting property can be understood by considering the limiting case

\[\lim_{\tau \to 0} \int_{-\infty}^{\infty} \tau^{-1} \Pi \left(\frac{x}{\tau} \right) g(x) \, dx = g(x_0) \]

Area = (height)(width) = \(\frac{g(x_0)}{\tau} \) \(\tau = g(x_0) \)
Representation of 1D Function

From the sifting property, we can write a 1D function as
\[g(x) = \int_{-\infty}^{\infty} g(\xi) \delta(x - \xi) \, d\xi. \]
To gain intuition, consider the approximation
\[g(x) \approx \sum_{n=-\infty}^{\infty} g(n\Delta x) \frac{1}{\Delta x} \left(\frac{x - n\Delta x}{\Delta x} \right) \Delta x. \]

Representation of 2D Function

Similarly, we can write a 2D function as
\[g(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(\xi, \eta) \delta(x - \xi, y - \eta) \, d\xi \, d\eta. \]
To gain intuition, consider the approximation
\[g(x, y) \approx \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} g(n\Delta x, m\Delta y) \frac{1}{\Delta x} \left(\frac{x - n\Delta x}{\Delta x} \right) \frac{1}{\Delta y} \left(\frac{y - m\Delta y}{\Delta y} \right) \Delta x \Delta y. \]

Impulse Response

Intuition: the impulse response is the response of a system to an input of infinitesimal width and unit area.

Since any input can be thought of as the weighted sum of impulses, a linear system is characterized by its impulse response(s).
Full Width Half Maximum (FWHM) is a measure of resolution.

Impulse Response

The impulse response characterizes the response of a system over all space to a Dirac delta impulse function at a certain location.

1D Impulse Response

$$h(x_2; \xi) = L[\delta(x_1 - \xi)]$$

2D Impulse Response

$$h(x_2, y_2; \xi, \eta) = L[\delta(x_1 - \xi, y_1 - \eta)]$$

Impulse at ξ, η.

X-Ray Imaging

Linearity (Addition)
Linearity (Scaling)

A system R is linear if for two inputs $I_1(x,y)$ and $I_2(x,y)$ with outputs $R(I_1(x,y))=K_1(x,y)$ and $R(I_2(x,y))=K_2(x,y)$

the response to the weighted sum of inputs is the weighted sum of outputs:

$R(a_1I_1(x,y) + a_2I_2(x,y)) = a_1K_1(x,y) + a_2K_2(x,y)$

Example

Are these linear systems?

- $g(x,y) \rightarrow g(x,y) + 10$
- $g(x,y) \rightarrow 10g(x,y)$

Superposition

$g[m] = g[0]\delta[m] + g[1]\delta[m - 1] + g[2]\delta[m - 2]$

$h[m',k] = L[\delta[m - k]]$

$y[m'] = L[g[m]]$

- $L[g[0]\delta[m] + g[1]\delta[m - 1] + g[2]\delta[m - 2]]$
- $L[g[0]\delta[m]] + L[g[1]\delta[m - 1]] + L[g[2]\delta[m - 2]]$
- $g[0]L[\delta[m]] + g[1]L[\delta[m - 1]] + g[2]L[\delta[m - 2]]$
- $g[0]h[m',0] + g[1]h[m',1] + g[2]h[m',2]$
- $\sum_{k=0}^{2} g[k]h[m',k]$
Superposition Integral

What is the response to an arbitrary function $g(x_1, y_1)$?

Write $g(x_1, y_1) = \int_\infty^\infty \int_\infty^\infty g(\xi, \eta) \delta(x_1 - \xi, y_1 - \eta) d\xi d\eta$.

The response is given by

$$I(x_2, y_2) = L[g(x_1, y_1)]$$

$$= L\left[\int_\infty^\infty \int_\infty^\infty g(\xi, \eta) \delta(x_1 - \xi, y_1 - \eta) d\xi d\eta \right]$$

$$= \int_\infty^\infty \int_\infty^\infty g(\xi, \eta) L[\delta(x_1 - \xi, y_1 - \eta)] d\xi d\eta$$

$$= \int_\infty^\infty \int_\infty^\infty g(\xi, \eta) h(x_2, y_2; \xi, \eta) d\xi d\eta$$

Space Invariance

If a system is space invariant, the impulse response depends only on the difference between the output coordinates and the position of the impulse and is given by $h(x_2, y_2, \xi, \eta) = h(x_1 - \xi, y_1 - \eta)$.

X-Ray Imaging

Is this a linear system? Is it a space invariant system?
Convolution

\[g[m] = g[0] \delta[m] + g[1] \delta[m - 1] + g[2] \delta[m - 2] \]

\[h[m', k] = L[\delta(m - k)] = h[m' - k] \]

\[y[m'] = L[g[m]] \]

\[= L[g[0] \delta[m]] + g[1] \delta[m - 1] + g[2] \delta[m - 2] \]

\[= L[g[0] \delta[m]] + L[g[1] \delta[m - 1]] + L[g[2] \delta[m - 2]] \]

\[= g[0] h[m' - 0] + g[1] h[m' - 1] + g[2] h[m' - 2] \]

\[= \sum_{k=0}^{2} g[k] h[m' - k] \]

1D Convolution

\[I(x) = \int_{-\infty}^{\infty} g(\xi) h(x; \xi) d\xi \]

\[= \int_{-\infty}^{\infty} g(\xi) h(x - \xi) d\xi \]

\[= g(x) * h(x) \]

Useful fact:

\[g(x) * \delta(x - \Delta) = \int_{-\infty}^{\infty} g(\xi) \delta(x - \Delta - \xi) d\xi \]

\[= g(x - \Delta) \]

2D Convolution

For a space invariant linear system, the superposition integral becomes a convolution integral.

\[I(x_2, y_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(\xi, \eta) h(x_2, y_2; \xi, \eta) d\xi d\eta \]

\[= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(\xi, \eta) h(x_2 - \xi, y_2 - \eta) d\xi d\eta \]

\[= g(x_2, y_2) * * h(x_2, y_2) \]

where ** denotes 2D convolution. This will sometimes be abbreviated as *, e.g. \(I(x_2, y_2) = g(x_2, y_2) * h(x_2, y_2) \).
1D Convolution Examples

\[
x \ast \begin{array}{c}
-1/2 \\
1/2
\end{array} = ?
\]

\[
x \ast \begin{array}{c}
-3/4 \\
1/4
\end{array} = ?
\]

2D Convolution Examples

\[
h(x) = \text{rect}(x, y)
\]

\[
g(x) = \delta(x+1/2, y) + \delta(x, y)
\]

\[
I(x, y) = g(x) \ast h(x, y)
\]

X-Ray Imaging

\[
t(x) = \frac{1}{M} \delta(x)
\]

\[
\frac{1}{m} \left(\frac{x}{m} \right)
\]
For off-center pinhole object, the shifted source image can be written as
\[
\frac{x - Mx_0}{m} = \frac{s(x)}{m} * \frac{1}{M} \delta(x - x_0)
\]
\[= s(x/m) * t\left(\frac{x}{M}\right)\]

For the general 2D case, we convolve the magnified object with the impulse response
\[
I(x, y) = t\left(\frac{x}{M}, \frac{y}{M}\right) * * \frac{1}{m^2} s\left(\frac{x}{m}, \frac{y}{m}\right)
\]

Note: we have ignored obliquity factors etc.
Summary

1. The response to a linear system can be characterized by a spatially varying impulse response and the application of the superposition integral.
2. A shift invariant linear system can be characterized by its impulse response and the application of a convolution integral.